High-Precision Two-Dimensional Atom Localization in a Cascade-Type Atomic System
-
Abstract
We investigate the behavior of two-dimensional (2D) atom localization in a three-level cascade-type atomic system via measuring the probe absorption. It is found that the precision of the atom localization can be improved by adjusting probe detuning and coupling a coherent coupling field and standing-wave fields to the same atomic transition. Remarkably, a single localization peak can be obtained by adjusting appropriate system parameters, and some corresponding explanations are also given.
Article Text
-
-
-
About This Article
Cite this article:
CHEN Jing-Dong, FANG Yu-Hong, ZHANG Ting. High-Precision Two-Dimensional Atom Localization in a Cascade-Type Atomic System[J]. Chin. Phys. Lett., 2014, 31(10): 104201. DOI: 10.1088/0256-307X/31/10/104201
CHEN Jing-Dong, FANG Yu-Hong, ZHANG Ting. High-Precision Two-Dimensional Atom Localization in a Cascade-Type Atomic System[J]. Chin. Phys. Lett., 2014, 31(10): 104201. DOI: 10.1088/0256-307X/31/10/104201
|
CHEN Jing-Dong, FANG Yu-Hong, ZHANG Ting. High-Precision Two-Dimensional Atom Localization in a Cascade-Type Atomic System[J]. Chin. Phys. Lett., 2014, 31(10): 104201. DOI: 10.1088/0256-307X/31/10/104201
CHEN Jing-Dong, FANG Yu-Hong, ZHANG Ting. High-Precision Two-Dimensional Atom Localization in a Cascade-Type Atomic System[J]. Chin. Phys. Lett., 2014, 31(10): 104201. DOI: 10.1088/0256-307X/31/10/104201
|