Ionization Channels of the Molecular Ion H2+ in Intense Laser Field
-
Abstract
Ionization channels of the molecular ion H2+ for various initial vibrational states in intense laser field (80 fs, 800 nm, I=6.8×1013 W/cm2) are theoretically investigated by numerically solving the time-dependent Schr?dinger equation. The results confirm that the channels largely depend on the selection of initial vibrational states by analyzing the variations of peak locations in the nuclear initial kinetic-energy-release spectra. Furthermore, the selection of the ionization channels is sensitive to the wavelength of the laser pulse. In addition, time-dependent competition between direct multi-photon ionization and charge-resonance-enhanced ionization are is discussed.
Article Text
-
-
-
About This Article
Cite this article:
MIAO Xiang-Yang, SHI Hao-Ting. Ionization Channels of the Molecular Ion H2+ in Intense Laser Field[J]. Chin. Phys. Lett., 2013, 30(11): 113301. DOI: 10.1088/0256-307X/30/11/113301
MIAO Xiang-Yang, SHI Hao-Ting. Ionization Channels of the Molecular Ion H2+ in Intense Laser Field[J]. Chin. Phys. Lett., 2013, 30(11): 113301. DOI: 10.1088/0256-307X/30/11/113301
|
MIAO Xiang-Yang, SHI Hao-Ting. Ionization Channels of the Molecular Ion H2+ in Intense Laser Field[J]. Chin. Phys. Lett., 2013, 30(11): 113301. DOI: 10.1088/0256-307X/30/11/113301
MIAO Xiang-Yang, SHI Hao-Ting. Ionization Channels of the Molecular Ion H2+ in Intense Laser Field[J]. Chin. Phys. Lett., 2013, 30(11): 113301. DOI: 10.1088/0256-307X/30/11/113301
|