Forward Current Transport Mechanism and Schottky Barrier Characteristics of a Ni/Au Contact on n-GaN

  • The forward current transport mechanism and Schottky barrier characteristics of a Ni/Au contact on n-GaN are studied by using temperature-dependent current-voltage (TIV) and capacitance-voltage (CV) measurements. The low-forward-bias IV curve of the Schottky junction is found to be dominated by trap-assisted tunneling below 400 K, and thus can not be used to deduce the Schottky barrier height (SBH) based on the thermionic emission (TE) model. On the other hand, TE transport mechanism dominates the high-forward-bias region and a modified IV method is adopted to deduce the effective barrier height. It is found that the estimated SBH (~0.95 eV at 300 K) by the IV method is ~0.20 eV lower than that obtained by the CV method, which is explained by a barrier inhomogeneity model over the Schottky contact area.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return