Evolution of Slow Dual Steady-State Optical Solitons in a Cold Three-State Medium
-
Abstract
The generalized nonlinear Schrödinger equation, which describes the evolution of dual steady-state optical solitons in a cold three-state medium, is written as the Hamiltonian symplectic structure. The symplectic method is applied to investigate evolution of dual steady-state optical solitons. By adjusting the initial pulses, the saturation parameter variables and the distances of optical solitons, the different behaviors of dual steady-state optical solitons are analyzed.
Article Text
-
-
-
About This Article
Cite this article:
SUN Jian-Qiang, LI Hao-Chen, GU Xiao-Yan. Evolution of Slow Dual Steady-State Optical Solitons in a Cold Three-State Medium[J]. Chin. Phys. Lett., 2012, 29(7): 074213. DOI: 10.1088/0256-307X/29/7/074213
SUN Jian-Qiang, LI Hao-Chen, GU Xiao-Yan. Evolution of Slow Dual Steady-State Optical Solitons in a Cold Three-State Medium[J]. Chin. Phys. Lett., 2012, 29(7): 074213. DOI: 10.1088/0256-307X/29/7/074213
|
SUN Jian-Qiang, LI Hao-Chen, GU Xiao-Yan. Evolution of Slow Dual Steady-State Optical Solitons in a Cold Three-State Medium[J]. Chin. Phys. Lett., 2012, 29(7): 074213. DOI: 10.1088/0256-307X/29/7/074213
SUN Jian-Qiang, LI Hao-Chen, GU Xiao-Yan. Evolution of Slow Dual Steady-State Optical Solitons in a Cold Three-State Medium[J]. Chin. Phys. Lett., 2012, 29(7): 074213. DOI: 10.1088/0256-307X/29/7/074213
|