In-Situ SRPES Study on the Band Alignment of (0001)CdS/CdTe Heterojunction
-
Abstract
The band alignment of a (0001)CdS/CdTe heterojunction is in situ studied by synchrotron radiation photoemission spectroscopy (SRPES). The heterojunction is formed through stepwise deposition of a CdTe film on a wurtzite (0001)CdS single crystalline substrate via molecular beam epitaxy. CdS shows an upward band bending of 0.55 eV, the valence band offset ΔEV is calculated to be 0.65 eV and the conduction band offset ΔEC is 0.31 eV. The interfacial band alignment is sketched to display type-I band alignment. -
References
[1] Wu X 2004 Sol. Energy 77 803 doi: 10.1016/j.solener.2004.06.006 [2] Mitra M, Drayton J, Cooray M L C, Karpov V G and Shvydkac D 2007 J. Appl. Phys. 102 034505 [3] Böer K W 2010 J. Appl. Phys. 107 023701 [4] Li J, Chen J and Collins R W 2010 Appl. Phys. Lett. 97 181909 [5] Munoz A, Chetty N and Martin R M 1990 Phys. Rev. B 41 2976 [6] Frey A, Bass U, Mahapatra S, Schumacher C, Geurts J and Brunner K 2010 Phys. Rev. B 82 195318 [7] Guo Y, Liu X L, Song H Ping et al 2010 Chin. Phys. Lett. 27 067302 [8] Loher T, Tomm Y, Pettenkofer C, Klein A and Jaegermann W 2000 Semicond. Sci. Technol. 15 514 [9] Cook T E, Fulton C C, Mecouch W J, Davis R F, Lucovsky G and Nemanicha R J 2003 J. Appl. Phys. 94 3949 [10] Fritsche J, Thißen A, Klein A and Jaegermann W 2001 Thin Solid Films 387 158 [11] Boieriu P, Sporkena R and Sivananthan S 2002 J. Vac. Sci. Technol. B 20 1777 [12] Niles D W and Hochst H 1990 Phys. Rev. B 41 12710 [13] Fritsche J, Schulmeyer T, Kraft D, Thißen A, Klein A and Jaegermann W 2002 Appl. Phys. Lett. 81 2297 [14] Nishi K, Ohyama H, Siuzuki T, Mitsuyu T and Tomimasu T 1997 Appl. Phys. Lett. 70 3585 [15] Ebert H, Knecht M, Muhler M, Helmer O and Bensch W 1995 J. Phys. Chem. 99 3326 [16] Moulder J F, Stickle W F, Sobol P E and Bomben K D 1992 Handbook of X-Ray Photoelectron Spectroscopy (Perking-Elmer Corporation, Physical Electronics Division Eden Prairie) [17] Bennett M R, Cafolla A A, Cairns J W, Dunscombe C J and Williams R H 1996 Surf. Sci. 360 187 [18] Waag A, Wu Y S, Bickne R N, Tassius U, Gonser-Buntrock C and Landwehr G 1990 J. Appl. Phys. 68 212 [19] Windheim J A V and Cocivera M 1992 J. Phys. Chem. Solids 53 31 [20] Wienecke M, Berger H and Schenk M 1993 Mater. Sci. Eng. B 16 219 [21] Sebastian P J 1992 Thin Solid Films 221 233 -
Related Articles
[1] Rui-Peng Wang, Tao-Tao Yu, Muhammad Asif Shakoori, Ming-Jun Han, Yu-Xiao Hu, Ho-Kin Tang, Hai-Peng Li. Phonon Thermal Transport at Interfaces of Graphene/Quasi-Hexagonal Phase Fullerene Heterostructure [J]. Chin. Phys. Lett., 2025, 42(4): 046601. doi: 10.1088/0256-307X/42/4/046601 [2] DOU Quan-Tao, ZUO Guang-Hong, FANG Hai-Ping. Interaction between a Functionalized Single-Walled Carbon Nanotube and the YAP65WW Protein Domain: a Molecular Dynamics Simulation Study [J]. Chin. Phys. Lett., 2012, 29(6): 068701. doi: 10.1088/0256-307X/29/6/068701 [3] GAO Yu-Feng, SUN De-Yan. Molecular-Dynamics Simulations of Droplets on a Solid Surface [J]. Chin. Phys. Lett., 2010, 27(6): 066802. doi: 10.1088/0256-307X/27/6/066802 [4] LI Jiu-Kai, TIAN Xiao-Feng. Molecular Dynamics Simulations of Thermal Properties of Solid Uranium Dioxide [J]. Chin. Phys. Lett., 2010, 27(3): 036501. doi: 10.1088/0256-307X/27/3/036501 [5] HUANG Xiao-Peng, HUAI Xiu-Lan. Molecular Dynamics Simulation of Thermal Conductivity in Si--Ge Nanocomposites [J]. Chin. Phys. Lett., 2008, 25(8): 2973-2976. [6] SUN Tie-Ying, LONG Xing-Gui, WANG Jun, HOU Qing, WU Zhong-Cheng, PENG Shu-Ming, LUO Shun-Zhong. Molecular Dynamics Simulations of Helium Behaviour in Titanium Crystals [J]. Chin. Phys. Lett., 2008, 25(5): 1784-1787. [7] ZENG Zhao-Yi, CHEN Xiang-Rong, ZHU Jun, HU Cui-E. Phase Transition and Melting Curves of Calcium Fluoride via Molecular Dynamics Simulations [J]. Chin. Phys. Lett., 2008, 25(1): 230-233. [8] ZHAO Gang, LIU Chang-Song, ZHU Zhen-Gang. Ab Initio Molecular Dynamics Simulations on Structural Properties of [J]. Chin. Phys. Lett., 2005, 22(8): 1987-1990. [9] WANG Ling, NING Xi-Jing. Molecular Dynamics Simulations of Helium Behaviour in Copper Crystals [J]. Chin. Phys. Lett., 2003, 20(9): 1416-1419. [10] FENG Xiao-Li, LI Zhi-Xin, GUO Zeng-Yuan. Size Effect of Lattice Thermal Conductivity Across NanoscaleThin Films by Molecular Dynamics Simulations [J]. Chin. Phys. Lett., 2001, 18(3): 416-418.