Odd Systems in Deformed Relativistic Hartree Bogoliubov Theory in Continuum

  • In order to describe the exotic nuclear structure in unstable odd-A or odd−odd nuclei, the deformed relativistic Hartree Bogoliubov theory in continuum is extended to incorporate the blocking effect due to the odd nucleon. For a microscopic and self-consistent description of pairing correlations, continuum, deformation, blocking effects, and the extended spatial density distribution in exotic nuclei, the deformed relativistic Hartree Bogoliubov equations are solved in a Woods–Saxon basis in which the radial wave functions have a proper asymptotic behavior at large r. The formalism and numerical details are provided. The code is checked by comparing the results with those of spherical relativistic continuum Hartree Bogoliubov theory in the nucleus 19O. The prolate deformed nucleus 15C is studied by examining the neutron levels and density distributions.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return