Three-Dimensional Thermal Analysis of 18-Core Photonic Crystal Fiber Lasers

  • The three-dimensional thermal properties of 18-core photonic crystal fiber lasers operated under natural convection are investigated. The temperature sensing technique based on a fiber Bragg grating sensor array is proposed to measure the longitudinal temperature distribution of a 1.6-m-long ytterbium-doped 18-core photonic crystal fiber. The results show that the temperature decreases from the pump end to the launch end exponentially. Moreover, the radial temperature distribution of the fiber end is investigated by using the full-vector finite-element method. The numerical results match well with the experimental data and the coating temperature reaches 422.7 K, approaching the critical value of polymer cladding, when the pumping power is 40 W. Therefore the fiber end cooling is necessary to achieve power scaling. Compared with natural convection methods, the copper cooling scheme is found to be an effective method to reduce the fiber temperature.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return