Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation
-
Abstract
Two classes of periodic wave solutions to the (3+1)-dimensional soliton equation are derived by employing the Hirota bilinear method and theta function identities. These solutions are expressed in terms of Riemann theta functions of genus one and can be converted into an elliptic function format, both their long wave limit and extremum value are discussed in detail.
Article Text
-
-
-
About This Article
Cite this article:
WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 020203. DOI: 10.1088/0256-307X/29/2/020203
WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 020203. DOI: 10.1088/0256-307X/29/2/020203
|
WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 020203. DOI: 10.1088/0256-307X/29/2/020203
WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 020203. DOI: 10.1088/0256-307X/29/2/020203
|