Generalized Zero-Temperature Glauber Dynamics in a Two-Dimensional Square Lattice

  • Received Date: August 13, 2012
  • Revised Date: November 26, 2012
  • Published Date: November 30, 2012
  • A new spin flipping mechanism at zero-temperature is proposed based on a node model. In a two-dimensional square lattice, at the zero-temperature, the spin flipping depends on both itself and the surroundings, while the influence from the surroundings is embodied by an adjustable parameter. With the parameter adjusting, a first order phase transition is observed.
  • Article Text

  • [1] Glauber R J 1963 J. Math. Phys. 4 294 doi: 10.1063/1.1703954
    [2] Liggett T M 1985 Interacting Particle Systems (New York: Springer-Verlag)
    [3] Spirin V, Krapivsky P L and Redner S 2001 Phys. Rev. E 65 016119
    [4] Barros K, Krapivsky P L and Redner S 2009 Phys. Rev. E 80 040101(R)
    [5] Olejarz J, Krapivsky P L and Redner S 2011 Phys. Rev. E 83 051104
    [6] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
    [7] Dorogovtsev S N, Goltsev A V and Mendes J F F 2008 Rev. Mod. Phys. 80 1275
    [8] Herrero C P 2009 J. Phys. A: Math. Theor. 42 415102
    [9] Castellano C and Loreto V 2005 Phys. Rev. E 71 066107
    [10] Weerasinghe G L, Needs R J and Pickard C J 2011 Phys. Rev. B 84 174110
    [11] Casadei M, Ren X, Rinke P, Rubio A and Scheffler M 2012 Phys. Rev. Lett. 109 146402
    [12] Fratini E and Pieri P 2012 Phys. Rev. A 85 063618
    [13] Osychenko O N, Astrakharchik G E, Mazzanti F and Boronat J 2012 Phys. Rev. A 85 063604
    [14] Kalis H, Klagges D, Orús R and Schmidt K P 2012 Phys. Rev. A 86 022317
    [15] Shopova D V and Uzunov D I 2003 Phys. Rep. 379 1
    [16] Meng Q K 2011 Chin. Phys. Lett. 28 118901
    [17] Zhu J Y and Yang Z R 1999 Phys. Rev. E 59 1551
  • Related Articles

    [1]GUO Xiao-Yong, LI Jun-Min. Projective Synchronization of Complex Dynamical Networks with Time-Varying Coupling Strength via Hybrid Feedback Control [J]. Chin. Phys. Lett., 2011, 28(12): 120503. doi: 10.1088/0256-307X/28/12/120503
    [2]TANG Qian, WANG Xing-Yuan. Chaos Control and Synchronization of Cellular Neural Network with Delays Based on OPNCL Control [J]. Chin. Phys. Lett., 2010, 27(3): 030508. doi: 10.1088/0256-307X/27/3/030508
    [3]WANG Jian-An, LIU He-Ping. Adaptive Synchronization of an Array of Time-Varying Coupled Delayed Neural Networks [J]. Chin. Phys. Lett., 2010, 27(3): 030505. doi: 10.1088/0256-307X/27/3/030505
    [4]DING Gang, LIN Lin, ZHONG Shi-Sheng. Functional Time Series Prediction Using Process Neural Network [J]. Chin. Phys. Lett., 2009, 26(9): 090502. doi: 10.1088/0256-307X/26/9/090502
    [5]CHEN Jian-Rui, JIAO Li-Cheng, WU Jian-She, WANG Xiao-Hua. Adaptive Synchronization between Two Different Complex Networks with Time-Varying Delay Coupling [J]. Chin. Phys. Lett., 2009, 26(6): 060505. doi: 10.1088/0256-307X/26/6/060505
    [6]YANG Ji-Chen, LU Qi-Shao. Flocking of Multi-agent Systems Following Virtual Leader with Time-Varying Velocity [J]. Chin. Phys. Lett., 2009, 26(2): 020501. doi: 10.1088/0256-307X/26/2/020501
    [7]SUN Mei, ZENG Chang-Yan, TIAN Li-Xin. Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay [J]. Chin. Phys. Lett., 2009, 26(1): 010501. doi: 10.1088/0256-307X/26/1/010501
    [8]LI Zhi. Global Synchronization of General Delayed Dynamical Networks [J]. Chin. Phys. Lett., 2007, 24(7): 1869-1872.
    [9]CHEN Bing-Kang, ZHANG-Ying, GAO Ben-Qing. Solution of Electromagnetic Wave in Time-Varying Media in Two-Dimensional Space [J]. Chin. Phys. Lett., 2006, 23(3): 595-598.
    [10]ZHANG Jia-Shu, XIAO Xian-Ci. Predicting Chaotic Time Series Using Recurrent Neural Network [J]. Chin. Phys. Lett., 2000, 17(2): 88-90.

Catalog

    Article views (0) PDF downloads (468) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return