Preparation and Characterization of Fe-Based Metallic Glasses with Pure and Raw Elements

  • Amorphous alloys with a composition (at.%) Fe48Cr15Mo14C15B6Y2 were prepared by using either pure elements (alloy B1) or a commercial AISI430 steel as a base material (B2). When prepared from pure elements, alloy (B1) could be cast in plate form with a fixed thickness of 2 mm and variable lengths between 10 and 20 mm by means of copper-mold injection in an air atmosphere. In the case of alloy B2, prepared by using commercial grade raw materials, rods of 2 mm diameter are obtained. Ribbons (B1 and B2) of width 5 mm and thickness about 30 μm are prepared from the arc-melted ingots using a single roller melt spinner at a wheel speed of 40 m/s. The thermal and structural properties of the samples are measured by a combination of differential scanning calorimetry (DSC), x-ray diffraction and scanning electron microscopy. Chemical compositions are checked by energy dispersive spectroscopy analysis. X-ray diffraction and scanning electron microscopy observations confirm that an amorphous structure is obtained in all the samples. A minor fraction of crystalline phases (oxides and carbides) is detected on the as-cast surface. Values of hardness and Young modulus were measured by nanoindentation for both the alloys. The effects of adverse casting conditions (such as air atmosphere, non-conventional injection copper mold casting and the partial replacement of pure elements with commercial grade raw materials) on the glass formation and properties of the alloy are discussed.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return