Theoretical Analysis of 4f and 5p Inner-Shell Excitations of W-W3+ Ions

  • Detailed theoretical calculations are performed for the 4f and 5p inner-shell excitations of W-W3+ ions using the multiconfiguration Hartree–Fock method in order to better understand the origin of the XUV photoabsorption spectra of W atoms from the dual laser-produced plasma experiment (Costello et al. J. Phys. B 24 (1991) 5063 and the spectra of photon-induced single ionization of Wq+ ions (q=1, 2, 3) (Müller et al. Phys. Scr. T1441 (2011) 014052) from photon-ions merged beam experiments, respectively. Two broad and strong resonances in the experimental spectra have also been theoretically identified mainly from 5p–5d resonance. The 4f–5d,6d and 5p–6d transitions also make a small contribution to each spectrum, which are superimposed on the 5p–5d transition arrays. Based on the assumption of a normalized Boltzmann distribution among the excited states, we succeed in reproducing spectra which are in good agreement with experiments.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return