Second-Order Contribution of the Incompressibility in Asymmetric Nuclear Matter

  • Received Date: September 12, 2011
  • Revised Date: December 31, 1899
  • Published Date: December 31, 2011
  • With the complementarity of the nucleonic three-body force, we present the saturation points of symmetric nuclear matter with different interactions adopted within the Brueckner–Hartree–Fock scheme, and a more accurate empirical parameterization function for the equation of state of symmetric nuclear matter and pure neutron matter. On the basis of this fit formula, the symmetry energy and its derivatives are investigated, and ultimately the higher-order coefficient of the isobaric incompressibility for isospin asymmetric nuclear matter is predicted.
  • Article Text

  • [1] Baldo M, Bombaci I and Burgio G F 1997 Astron. Astrophys. 328 274
    [2]   Lejeune A, Lombardo U and Zuo W 2000 Phys. Lett. B 477 45 
    [3]   Zuo W, Lejeune A, Lombardo U and Mathiot J F 2002 Nucl. Phys. A 706 418 
    [4]   Brockmann R and Machleidt R 1990 Phys. Rev. C 42 1965 
    [5]   Alonso D and Sammarruca F 2003 Phys. Rev. C 67 054301 
    [6]   Carlson J, Pandharipande V R and Wiringa R B 1983 Nucl. Phys. A 401 59 
    [7]   Akmal A, Pandharipande V R and Ravenhall D G 1998 Phys. Rev. C 58 1804 
    [8]   Ren Z Z, Tai F and Chen D H 2002 Phys. Rev. C 66 064306 
    [9]   Meng J, Toki H, Zhou S G et al 2006 Prog. Part. Nucl. Phys. 57 470 
    [10]   Chen L W, Ko C M and Li B A 2005 Phys. Rev. C 72 064309 
    [11]   Di Toro M, Baran V, Colonna M et al 1999 Prog. Part. Nucl. Phys. 42 125 
    [12]   Li B A, Chen L W and Ko C M 2008 Phys. Rep. 464 113 
    [13]   Grangé P, Lejeune A, Martzolff M and Mathiot J F 1989 Phys. Rev. C 40 1040 
    [14]   Li Z H, Lombardo U, Schulze H J and Zuo W 2008 Phys. Rev. C 77 034316 
    [15]   Li Z H and Schulze H J 2008 Phys. Rev. C 78 028801 
    [16]   Coon S A, Scadron M D, McNamee P C et al 1979 Nucl. Phys. A 317 242 
    [17]   Baldo M and Ferreira L S 1999 Phys. Rev. C 59 682 
    [18]   Jeukenne J P, Lejeune A and Mahaux C 1976 Phys. Rep. 25 83 
    [19]   Song H Q, Baldo M, Giansiracusa G and Lombardo U 1998 Phys. Rev. Lett. 81 1584 
    [20]   Sartor R 2006 Phys. Rev. C 73 034307 
    [21]   Chen L W, Cai B J, Ko C M et al 2009 Phys. Rev. C 80 014322 
    [22]   Prakash M and Bedell K S 1985 Phys. Rev. C 32 1118 
    [23]   Wiringa B R, Stoks V G J and Schiavilla R 1995 Phys. Rev. C 51 38 
    [24]   Machleidt R, Holinde K and Elster C 1987 Phys. Rep. 149 1 
    [25]   Machleidt R 1989 Adv. Nucl. Phys. 19 189 
    [26]   Stoks V G J, Klomp R A M, Terheggen C P F and de Swart J J 1994 Phys. Rev. C 49 2950 
    [27]   Li B A and Steiner A W 2006 Phys. Lett. B 642 436 
    [28]   Li T et al 2007 Phys. Rev. Lett. 99 162503 
    [29]   Garg U et al 2007 Nucl. Phys. A 788 36 
  • Related Articles

    [1]GAN Sheng-Xin, U. Lombardo, U. Lombardo. Nucleon Effective Mass in Asymmetric Nuclear Matter within Extended Brueckner Approach [J]. Chin. Phys. Lett., 2012, 29(4): 042102. doi: 10.1088/0256-307X/29/4/042102
    [2]LI Zeng-Hua, ZUO Wei, GUO Wen-Jun. Single-Particle Properties of Isospin Asymmetric Nuclear Matter [J]. Chin. Phys. Lett., 2012, 29(1): 012102. doi: 10.1088/0256-307X/29/1/012102
    [3]WEN Jing, JIANG Hong-Bing, YU Jing, YANG Hong, GONG Qi-Huang. Broadband Asymmetric Conical Emission via Cascaded Second-Order Nonlinear Polarization during the Propagation of Femtosecond Laser Pulses in a BBO Crystal [J]. Chin. Phys. Lett., 2011, 28(6): 064207. doi: 10.1088/0256-307X/28/6/064207
    [4]LU Xiao-Hua, ZHANG Ying-Xun, LI Zhu-Xia, ZHAO Zhi-Xiang. Equation of State for Isospin Asymmetric Matter of Nucleons and Deltas [J]. Chin. Phys. Lett., 2008, 25(11): 3932-3935.
    [5]TIAN Yuan, MA Zhong-Yu. A Separable Pairing Force in Nuclear Matter [J]. Chin. Phys. Lett., 2006, 23(12): 3226-3229.
    [6]ZHANG Xu-Ming, QIAN Wei-Liang, SU Ru-Keng. Liquid-Gas Phase Transition for Asymmetric Nuclear Matter in the Zimanyi-Moszkowski Model [J]. Chin. Phys. Lett., 2004, 21(7): 1240-1242.
    [7]LI Zeng-Hua, ZUO Wei, LU Guang-Cheng. Phase Transition of Hot Nuclear Matter [J]. Chin. Phys. Lett., 2004, 21(1): 29-32.
    [8]XU Chong-Ming, WU Xue-Jun. Extending the First-Order Post-Newtonian Scheme in Multiple Systems to the Second-Order Contributions to Light Propagation [J]. Chin. Phys. Lett., 2003, 20(2): 195-198.
    [9]LIU Ling, MA Zhong-Yu. A New Decomposition Approach of Dirac Brueckner Hartree-FockG Matrix for Asymmetric Nuclear Matter [J]. Chin. Phys. Lett., 2002, 19(2): 190-193.
    [10]WANG Nengping, YANG Shande. Compression Modulus of Finite Nuclear Matter at Zero Temperature [J]. Chin. Phys. Lett., 1995, 12(6): 338-341.

Catalog

    Article views (2) PDF downloads (539) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return