Growth and Properties of Blue and Amber Complex Light Emitting InGaN/GaN Multi-Quantum Wells

  • Blue-red complex light emitting InGaN/GaN multi-quantum well (MQW) structures are fabricated by metal organic chemical vapor deposition (MOCVD). The structures are grown on a 2-inch diameter (0001) oriented (c−face) sapphire substrate, which consists of an approximately 2-µm−thick GaN template and a five-period layer consisting of a 4.9-nm-thick In0.18Ga0.82N well layer and a GaN barrier layer. The surface morphology of the MQW structures is observed by an atomic force microscope (AFM), which indicates the presence of islands of several tens of nanometers in height on the surface. The high resolution x−ray diffraction (XRD) θ/2θ scan is carried out on the symmetric (0002) of the InGaN/GaN MQW structures. At least four order satellite peaks presented in the XRD spectrum indicate that the thickness and alloy compositions of the individual quantum wells are repeatable throughout the active region. Besides the 364 nm GaN band edge emission, two main emissions of blue and amber light from these MQWs are found, which possibly originate from the carrier recombinations in the InGaN/GaN QWs and InGaN quasi-quantum dots embedded in the QWs.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return