The Decay Rate of J/ψ to Λc+øverlineΣ+ in and beyond the Standard Model

  • Received Date: March 17, 2011
  • Published Date: June 30, 2011
  • ã With rapid growth of the database of the BES III and the proposed super flavor factory, measurement of the rare J/ψ decays may be feasible, especially the weak decays into baryon final states. In this work, we study the decay rate of J/ψ to Λc+øverline Σ+ in the standard model (SM) and physics beyond the SM (here we use the unparticle model as an example). The quark−pair-creation model is employed to describe the creation of a pair of qq from a vacuum. We find that the rate of J/ψ→Λc+ is of the order of 10−10 in the SM, whereas the contribution of the unparticle is too small to be substantial. Therefore if a large branching ratio is observed, it must be due to new physics beyond the SM, but by no means the unparticle.
  • Article Text

  • [1] Okubo S 1963 Phys. Lett. 5 165
    [2] Iizuka J, Okada K and Shito O 1965 Prog. Theor. Phys. 35 1061
    [3] Wang Y M, Zou H, Wei Z T, Li X Q and Lu C D 2008 Eur. Phys. J. C 54 107
    [4] Wang Y M, Zou H, Wei Z T, Li X Q and Lu C D 2009 J. Phys. G 36 105002
    [5] Li J, Liao X T, Yang M, Yang H X, Xu M, Zhang B X, Shen X Y and Yang Y X 2010 Chin. Phys. Lett. 27 041301
    [6] Liao G R, Ping R G and Yang Y X 2009 Chin. Phys. Lett. 26 051101
    [7] Georgi H 2007 Phys. Rev. Lett. 98 221601
    [8] Liu X, Ke H W, Qiao Q P, Wei Z T and Li X Q 2008 Phys. Rev. D 77 035014
    [9] Cheung K, Keung W Y and Yuan T C 2009 AIP Conf. Proc. 1078 156
    [10] Cheung K, Kephart T W, Keung W Y and Yuan T C 2008 Phys. Lett. B 662 436
    [11] Cheung K, Li C S and Yuan T C 2008 Phys. Rev. D 77 097701
    [12] Cheung K, Keung W Y and Yuan T C 2007 Phys. Rev. Lett. 99 051803
    [13] Li X Q and Wei Z T 2007 Phys. Lett. B 651 380
    [14] Chen S L, He X G, Li X Q, Tsai H C and Wei Z T 2009 Eur. Phys. J. C 59 899
    [15] Wei Z T 2008 Int. J. Mod. Phys. A 23 3339
    [16] L Micu, Nucl. Phys. B 10 , 521 (1969);
    [17] Blundell H G and Godfrey S 1996 Phys. Rev. D 53 3700
    [18] Guo X H, Ke H W, Li X Q, Liu X and Zhao S M 2007 Commun. Theor. Phys. 48 509
    [19] Yaouanc A Le, Oliver L, Pène O and Raynal J 1987 Hadron Transitions in the Quark Model (New York: Gordon and Breach Science Publishers)
    [20] Ping R G, Zou B S and Chiang H C 2004 Eur. Phys. J. A 23 129
    [21] Cheng H Y, Chua C K and Hwang C W 2004 Phys. Rev. D 69 074025
    [22] Nakamura K et al (Particle Data Group) 2010 J. Phys. G 37 075021
    [23] Wang Y M, Zou H, Wei Z T, Li X Q and Lu C D 2008 Eur. Phys. J. C 55 607
    [24] Li X Q, Liu Y and Wei Z T 2008 Eur. Phys. J. C 56 97
    [25] Wei Z T, Xu Y and Li X Q 2009 Eur. Phys. J. C 62 593
  • Related Articles

    [1]DAI Zheng-De, WU Feng-Xia, LIU Jun, MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation [J]. Chin. Phys. Lett., 2012, 29(4): 040201. doi: 10.1088/0256-307X/29/4/040201
    [2]CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 2012, 29(3): 030201. doi: 10.1088/0256-307X/29/3/030201
    [3]LV Zhong-Quan, XUE Mei, WANG Yu-Shun. A New Multi-Symplectic Scheme for the KdV Equation [J]. Chin. Phys. Lett., 2011, 28(6): 060205. doi: 10.1088/0256-307X/28/6/060205
    [4]WANG Yu-Shun, WANG Bin, CHEN Xin. Multisymplectic Euler Box Scheme for the KdV Equation [J]. Chin. Phys. Lett., 2007, 24(2): 312-314.
    [5]LI Wen-Min, GENG Xian-Guo. Darboux Transformation of a Differential--Difference Equation and Its Explicit Solutions [J]. Chin. Phys. Lett., 2006, 23(6): 1361-1364.
    [6]MA Chang-Feng. A New Lattice Boltzmann Model for KdV-Burgers Equation [J]. Chin. Phys. Lett., 2005, 22(9): 2313-2315.
    [7]YAN Jia-Ren, PAN Liu-Xian, ZHOU Guang-Hui. Soliton Perturbations for a Combined KdV-MKdV Equation [J]. Chin. Phys. Lett., 2000, 17(9): 625-627.
    [8]YANG Kongqing. A Periodic Solution of Kdv Equation in Virasoro Algebra [J]. Chin. Phys. Lett., 1995, 12(2): 65-67.
    [9]ZHANG Jiefang, HAN Ping. Symmetries of the Variable Coefficient KdV Equation and ThreeHierarchies of the Integrodifferential Variable Coefficient KdV Equation [J]. Chin. Phys. Lett., 1994, 11(12): 721-723.
    [10]TANG Shimin. Various Progressive Waves as solutions to the Modified KdV Equation [J]. Chin. Phys. Lett., 1991, 8(6): 292-295.

Catalog

    Article views (0) PDF downloads (426) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return