Monitoring Hydrogen Sulfide Using a Quantum Cascade Laser Based Trace Gas Sensing System

  • Received Date: February 20, 2011
  • Published Date: May 31, 2011
  • We present the detection of hydrogen sulfide (H2S) in a quantum cascade laser (QCL) based gas sensing system employing direct laser absorption spectroscopy. The sensitivity is obtained to be 3.61×10−6 cm−1Hz−1/2 and the H2S broadening coefficient in N2 is analyzed by fitting to the plot of the Lorentzian half width at the half maximum as a function of N2 pressure is 0.1124 ±0.0031 cm−1⋅atm−1. A simulation based on data from the HITRAN database shows broad agreement with the experimentally obtained spectrum.
  • Article Text

  • [1] Tittel F K, Richter D and Fried A 2003 Top. Appl. Phys. 89 445
    [2] Curl R F and Tittel F K 2002 Ann. Rep. Prog. Chem. C 98 219
    [3] Velde S V, Steenberghe D, Van Hee P and Quirynen M 2009 J. Dental Res. 88 285
    [4] Van Helden J H, Horrocks S J and Ritchie G A D 2008 Appl. Phys. Lett. 92 081506
    [5] Rothman L S, Jacquemart D, Barbe A, Chris Benner D, Birk M, Brown L R, Carleer M R, Chackerian C J, Chance K, Coudert L H, Dana V, Devi V M, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Vander Auwera J, Varanasi P, Wagner G and Quant J 2005 Spectrosc. Radiat. Transf. 96 139
    [6] Temme N M, Frank W J, Lozier, Daniel M, Boisvert and Ronald F 2010 NIST Handbook of Mathematical Functions (Cambridge: Cambridge University)
    [7] Ernst R R 1966 Sensitivity Enhancement in Magnetic Resonance, Advances in Magnetic Resonance (Orlando: Academic) vol 2 pp 1–135
    [8] Duxbury G, Langford N, McCulloch M T and Wright S 2005 Chem. Soc. Rev. 34 1
    [9] Kissel A, Sumpf B, Kronfeldt H D, Tikhomirov B A and Ponomarev Y N 2002 J. Mol. Spectrosc. 216 345
  • Related Articles

    [1]ZHANG Jin-Chuan, WANG Li-Jun, LIU Wan-Feng, LIU Feng-Qi, YIN Wen, LIU Jun-Qi, LI Lu, WANG Zhan-Guo. Room-Temperature Continuous-Wave Operation of a Tunable External Cavity Quantum Cascade Laser [J]. Chin. Phys. Lett., 2011, 28(7): 074203. doi: 10.1088/0256-307X/28/7/074203
    [2]CHEN Xiao-Dong, MAO Qing-He, SUN Qing, ZHAO Jia-Sheng, LI Pan, FENG Su-Juan. An All-Fiber Gas Raman Light Source Based on a Hydrogen-Filled Hollow-Core Photonic Crystal Fiber Pumped with a Q-Switched Fiber Laser [J]. Chin. Phys. Lett., 2011, 28(7): 074201. doi: 10.1088/0256-307X/28/7/074201
    [3]XU Lei, WANG Rui, LIU Yong, DONG Liang. Influence of Fabricating Process on Gas Sensing Properties of ZnO Nanofiber-Based Sensors [J]. Chin. Phys. Lett., 2011, 28(4): 040701. doi: 10.1088/0256-307X/28/4/040701
    [4]LIU Jun-Qi, CHEN Jian-Yan, LIU Feng-Qi, LI Lu, WANG Li-Jun, WANG Zhan-Guo. Terahertz Quantum Cascade Laser Operating at 2.94THz [J]. Chin. Phys. Lett., 2010, 27(10): 104205. doi: 10.1088/0256-307X/27/10/104205
    [5]Gang Chen, Seong-wook Park, I-Chun A. Chen, Clyde G. Bethea, Rainer Martini. Optical Switching of a Quantum Cascade Laser in Continuous Wave Operation [J]. Chin. Phys. Lett., 2010, 27(1): 018501. doi: 10.1088/0256-307X/27/1/018501
    [6]WEI Lin, LI Ai-Zhen, ZHANG Yong-Gang, LI Yao-Yao. The Self-Heating Effect of Quantum Cascade Lasers Based on a pectroscopic Method [J]. Chin. Phys. Lett., 2009, 26(8): 084206. doi: 10.1088/0256-307X/26/8/084206
    [7]CAO Jun-Cheng, LI Hua, HAN Ying-Jun, TAN Zhi-Yong, LU Jing-Tao, LUO Hui, LAFRAMBOISE Sylvain, LIU Hui-Chun. Terahertz Quantum Cascade Laser at 3.39THz [J]. Chin. Phys. Lett., 2008, 25(3): 953-956.
    [8]ZHANG Yong-Gang, XU Gang-Yi, LI Ai-Zhen, LI Yao-Yao, GU Yi, LIU Sheng, WEI Lin. Pulse Wavelength Scan of Room-Temperature Mid-Infrared Distributed Feedback Quantum Cascade Lasers for N2O Gas Detection [J]. Chin. Phys. Lett., 2006, 23(7): 1780-1783.
    [9]HE Xiao-Yong, CAO Jun-Cheng, L{U} Jing-Tao, FENG Song-Lin. Simulation of Confined and Interface Phonons Scattering in Terahertz Quantum Cascade Laser [J]. Chin. Phys. Lett., 2005, 22(12): 3163-3165.
    [10]DING Ruiqin, Geoffry Kolbe, D. D. Burgess. THE PROPAGATION OF A LASER PULSE THROUGH AN OPTICALLY THICK HYDROGEN PLASMA-AN EXAMINATION OF THE COLLISIONAL RADIATIVE MODELS OF THE ATOMIC HYDROGEN SYSTEM [J]. Chin. Phys. Lett., 1987, 4(2): 93-96.

Catalog

    Article views (3) PDF downloads (713) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return