Attack Robustness of Scale-Free Networks Based on Grey Information

  • Received Date: October 01, 2010
  • Published Date: April 30, 2011
  • We introduce an attack robustness model of scale-free networks based on grey information, which means that one can obtain the information of all nodes, but the attack information may be imprecise. The known random failure and the intentional attack are two extreme cases of our investigation. Using the generating function method, we derive the analytical value of the critical removal fraction of nodes for the disintegration of networks, which agree with the simulation results well. We also investigate the effect of grey information on the attack robustness of scale-free networks and find that decreasing the precision of attack information can remarkably enhance the attack robustness of scale-free networks.
  • Article Text

  • [1] Albert R, Jeong H and Barabási A L 2000 Nature 406 378
    [2] Holme P, Kim B J, Yoon C N and Han S K 2002 Phys. Rev. E 65 056109
    [3] Bollobás B and Riordan O 2003 Internet Math. 1 1
    [4] Chi L P, Yang C B and Cai X 2006 Chin. Phys. Lett. 23 263
    [5] Sun K and Ouyang Q 2001 Chin. Phys. Lett. 18 452
    [6] Wang J W and Rong L L 2008 Chin. Phys. Lett. 25 3826
    [7] Hu B, Li F and Zhou H S 2009 Chin. Phys. Lett. 26 128901
    [8] Liu J G, Wang Z T and Dang Y Z 2006 Mod. Phys. Lett. B 20 815
    [9] Zhao H and Gao Z Y 2007 Eur. Phys. J. B 57 95
    [10] Wang W X, Yang R and Lai Y C 2010 Phys. Rev. E 81 035102
    [11] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
    [12] Newman M E J 2003 SIAM Rev. 45 167
    [13] Wang X F 2002 Int. J. Bifurcation Chaos 12 885
    [14] Bollobás B 1985 Random Graphs (New York: Academic)
    [15] Wu J, Deng H Z, Tan Y J and Zhu D Z 2007 J. Phys. A 40 2665
    [16] Wu J, Deng H Z, Tan Y J and Li Y 2007 Chin. Phys. Lett. 24 2138
    [17] Gallos L K, Argyrakis P, Bunde A, Cohen R and Havlin S 2004 Physica A 344 504
    [18] Gallos L K, Cohen R, Argyrakis P, Bunde A and Havlin S 2005 Phys. Rev. Lett. 94 188701
    [19] Dall'Asta L 2005 J. Stat. Mech. P08011
    [20] Wu J, Tan Y, Deng H, Zhu D and Chi Y 2007 Physica A 383 745
    [21] Newman M E J, Strogatz S H and Watts D J 2001 Phys. Rev. E 64 26118
    [22] Callaway D S, Newman M E J, Strogatz S H and Watts D J 2000 Phys. Rev. Lett. 85 5468
    [23] Cohen R, Erez K, ben-Avraham D and Havlin S 2000 Phys. Rev. Lett. 85 4626
    [24] Cohen R, Erez K, ben-Avraham D and Havlin S 2001 Phys. Rev. Lett. 86 3682
    [25] Molloy M and Reed B 1995 Random Struct. Algor. 6 161
  • Related Articles

    [1]CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation [J]. Chin. Phys. Lett., 2012, 29(6): 060508. doi: 10.1088/0256-307X/29/6/060508
    [2]WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation [J]. Chin. Phys. Lett., 2011, 28(6): 060204. doi: 10.1088/0256-307X/28/6/060204
    [3]CHEN Shou-Ting, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan. N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation [J]. Chin. Phys. Lett., 2011, 28(6): 060202. doi: 10.1088/0256-307X/28/6/060202
    [4]LIANG Zu-Feng, TANG Xiao-Yan. Modulational Instability and Variable Separation Solution for a Generalized (2+1)-Dimensional Hirota Equation [J]. Chin. Phys. Lett., 2010, 27(3): 030201. doi: 10.1088/0256-307X/27/3/030201
    [5]ZHAO Song-Lin, ZHANG Da-Jun, CHEN Deng-Yuan. N-Soliton Solutions of Non-Isospectral Derivative Nonlinear Schrödinger Equation [J]. Chin. Phys. Lett., 2009, 26(3): 030202. doi: 10.1088/0256-307X/26/3/030202
    [6]XU Xiao-Ge, MENG Xiang-Hua, GAO Yi-Tian. N-Soliton Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Equation [J]. Chin. Phys. Lett., 2008, 25(11): 3890-3893.
    [7]SU Ting, GENG Xian-Guo, MA Yun-Ling. Wronskian Form of N-Soliton Solution for the (2+1)-Dimensional Breaking Soliton Equation [J]. Chin. Phys. Lett., 2007, 24(2): 305-307.
    [8]YAN Jia-Ren, PAN Liu-Xian, ZHOU Guang-Hui. Soliton Perturbations for a Combined KdV-MKdV Equation [J]. Chin. Phys. Lett., 2000, 17(9): 625-627.
    [9]YANG Kongqing. A Periodic Solution of Kdv Equation in Virasoro Algebra [J]. Chin. Phys. Lett., 1995, 12(2): 65-67.
    [10]LIU Shanliang, WANG Wenzheng, XU Jingzhi. Exact N-Soliton Solutions for the Higher-Order Nonlinear Schrödinger Equation Under Another Condition [J]. Chin. Phys. Lett., 1994, 11(12): 737-740.

Catalog

    Article views (5) PDF downloads (652) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return