Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems
-
Abstract
We present the multi-component Hunter–Saxton and μ−Camassa–Holm systems. It is shown that the multi-component Camassa–Holm, Hunter–Saxton and μ-Camassa–Holm systems are geometrically integrable, namely they describe pseudo-spherical surfaces. As a consequence, their infinite number of conservation laws can be directly constructed. For the three-component Camassa–Holm and Hunter–Saxton systems, their nonlocal symmetries depending on the pseudo-potentials are obtained.
Article Text
-
-
-
About This Article
Cite this article:
YAN Lu, SONG Jun-Feng, QU Chang-Zheng. Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 050204. DOI: 10.1088/0256-307X/28/5/050204
YAN Lu, SONG Jun-Feng, QU Chang-Zheng. Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 050204. DOI: 10.1088/0256-307X/28/5/050204
|
YAN Lu, SONG Jun-Feng, QU Chang-Zheng. Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 050204. DOI: 10.1088/0256-307X/28/5/050204
YAN Lu, SONG Jun-Feng, QU Chang-Zheng. Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 050204. DOI: 10.1088/0256-307X/28/5/050204
|