Suppression Impact of Group-Velocity Dispersion on the Cell of Pulse Cleaning

  • Received Date: December 12, 2010
  • Published Date: March 31, 2011
  • In order to improve the signal-to-noise ratio of an all-fiber front-end system for high-energy pete-watt (PW) laser devices, we propose a method to restrain the noise by optical Kerr effect. In terms of analytical calculation, it is found that the signal-to-noise ratio can be increased by three orders of magnitude with the cell of pulse cleaning for the pulses, with the full width at half maximum T FWHM larger than 100 ps. However, numerical calculation indicates that the group−velocity dispersion (GVD) may have a marked effect on the pulses with TFWHM smaller than 100 ps but larger than 5 ps, with the help of self-phase modulation (SPM). This would debase the performance of the cell of pulse cleaning. Meanwhile, we study the methods of restraining the distortion for the pulses with different peak powers to improve the performance of an all-fiber front-end system for high-energy PW laser devices, These results are of benefit to the experiments and the improvement of signal-to-noise ratio for high-energy PW laser devices.
  • Article Text

  • [1] Dawson J W, Liao Z M, Mitchell S, Messerly M, Beach R, Jovanovic I, Brown C, Payne S A and Barty C P J 2005 Proc. SPIE . UCRL-CONF-209779
    [2] Kohichi R, Tamura and Sato K 2002 Opt. Lett. 27 1268
    [3] Stolen R H, Botineau J and Ashkin A 1982 Opt. Lett. 7 512
    [4] Zhou J, Gong M L, Yan P, Zhang H T and Wang D S 2010 Opt. Lett. 35 1407
    [5] Nishizawa N and Murayama A 2007 Opt. Lett. 32 3516
    [6] Agrawal G P 2001 Nonlinera Fiber Optics 3rd edn (New York: Academic)
    [7] Penninckx D and Beck N 2006 IEEE Photon. Technol. Lett. 18 856
  • Related Articles

    [1]Rui-Peng Wang, Tao-Tao Yu, Muhammad Asif Shakoori, Ming-Jun Han, Yu-Xiao Hu, Ho-Kin Tang, Hai-Peng Li. Phonon Thermal Transport at Interfaces of Graphene/Quasi-Hexagonal Phase Fullerene Heterostructure [J]. Chin. Phys. Lett., 2025, 42(4): 046601. doi: 10.1088/0256-307X/42/4/046601
    [2]DOU Quan-Tao, ZUO Guang-Hong, FANG Hai-Ping. Interaction between a Functionalized Single-Walled Carbon Nanotube and the YAP65WW Protein Domain: a Molecular Dynamics Simulation Study [J]. Chin. Phys. Lett., 2012, 29(6): 068701. doi: 10.1088/0256-307X/29/6/068701
    [3]GAO Yu-Feng, SUN De-Yan. Molecular-Dynamics Simulations of Droplets on a Solid Surface [J]. Chin. Phys. Lett., 2010, 27(6): 066802. doi: 10.1088/0256-307X/27/6/066802
    [4]LI Jiu-Kai, TIAN Xiao-Feng. Molecular Dynamics Simulations of Thermal Properties of Solid Uranium Dioxide [J]. Chin. Phys. Lett., 2010, 27(3): 036501. doi: 10.1088/0256-307X/27/3/036501
    [5]HUANG Xiao-Peng, HUAI Xiu-Lan. Molecular Dynamics Simulation of Thermal Conductivity in Si--Ge Nanocomposites [J]. Chin. Phys. Lett., 2008, 25(8): 2973-2976.
    [6]SUN Tie-Ying, LONG Xing-Gui, WANG Jun, HOU Qing, WU Zhong-Cheng, PENG Shu-Ming, LUO Shun-Zhong. Molecular Dynamics Simulations of Helium Behaviour in Titanium Crystals [J]. Chin. Phys. Lett., 2008, 25(5): 1784-1787.
    [7]ZENG Zhao-Yi, CHEN Xiang-Rong, ZHU Jun, HU Cui-E. Phase Transition and Melting Curves of Calcium Fluoride via Molecular Dynamics Simulations [J]. Chin. Phys. Lett., 2008, 25(1): 230-233.
    [8]ZHAO Gang, LIU Chang-Song, ZHU Zhen-Gang. Ab Initio Molecular Dynamics Simulations on Structural Properties of [J]. Chin. Phys. Lett., 2005, 22(8): 1987-1990.
    [9]WANG Ling, NING Xi-Jing. Molecular Dynamics Simulations of Helium Behaviour in Copper Crystals [J]. Chin. Phys. Lett., 2003, 20(9): 1416-1419.
    [10]FENG Xiao-Li, LI Zhi-Xin, GUO Zeng-Yuan. Size Effect of Lattice Thermal Conductivity Across NanoscaleThin Films by Molecular Dynamics Simulations [J]. Chin. Phys. Lett., 2001, 18(3): 416-418.

Catalog

    Article views (1) PDF downloads (508) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return