We carry out numerical and theoretical investigations on the global unstable invariant set (manifold) of a saddle-node limit cycle in a leech heart interneuron model. The corresponding global bifurcation is accompanied by an explosion of secondary bifurcations of limit cycles and the emergence of loop-shaped bifurcation structures. The dynamical behaviors of the trajectories of the invariant set are very complicated and can only be partially explained by existing theories.
Shilnikov A and Cymbalyuk G 2005 Phys. Rev. Lett. 94 048101
[2]
Shilnikov A, Calabrese R and Cymbalyuk G 2005 Phys. Rev. E 71 056214
[3]
Yooer C, Xu J and Zhang X 2009 Chin. Phys. Lett. 26 080501
[4]
Yooer C, Xu J and Zhang X 2009 Chin. Phys. Lett. 26 070504
[5]
Turaev D V and Shilnikov L P 1995 Dokl. Math. 51 404
[6]
Rinzel J 1985 Lect. Notes Math. 1151 304
[7]
Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171
[8]
Dellnitz M and Hohmann A 1996 Nonlinear Dynamical Systems and Chaos ed Broer H W, Van Gils S A, Hoveijn I and Takens F (Basel: Birkhauser) p 449
[9]
Dellnitz M and Hohmann A 1997 Numer. Math. 75 293
[10]
Dellnitz M and Junge O 2002 Handbook of Dynamical Systems II: Towards Applications ed Fiedler B, Iooss G and Kopell N (Singapore: World Scientific) p 221
[11]
Hsu C S 1992 Int. J. Bifurcat. Chaos 2 727
[12]
Krauskopf B, Osinga H M, Doedel E J, Henderson M E, Guckenheimer J, Vladimirsky A, Dellnitz M and Junge O 2005 Int. J. Bifurcat. Chaos 15 763
[13]
Dellnitz M, Froyland G and Junge O 2001 Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems ed Fiedler B (Berlin: Springer-Verlag) p 145
[14]
Doedel E J 2009 AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations
[15]
Pontryagin L S 1957 Izv. Akad. Nauk SSSR Ser. Mater. 21 605
[16]
Pontryagin L S and Rodygin L V 1960 Sov. Math. Dokl. 1 237