Exotic Homoclinic Surface of a Saddle-Node Limit Cycle in a Leech Neuron Model
-
Abstract
We carry out numerical and theoretical investigations on the global unstable invariant set (manifold) of a saddle-node limit cycle in a leech heart interneuron model. The corresponding global bifurcation is accompanied by an explosion of secondary bifurcations of limit cycles and the emergence of loop-shaped bifurcation structures. The dynamical behaviors of the trajectories of the invariant set are very complicated and can only be partially explained by existing theories.
Article Text
-
-
-
About This Article
Cite this article:
YOOER Chi-Feng, WEI Fang, XU Jian-Xue, ZHANG Xin-Hua. Exotic Homoclinic Surface of a Saddle-Node Limit Cycle in a Leech Neuron Model[J]. Chin. Phys. Lett., 2011, 28(3): 030501. DOI: 10.1088/0256-307X/28/3/030501
YOOER Chi-Feng, WEI Fang, XU Jian-Xue, ZHANG Xin-Hua. Exotic Homoclinic Surface of a Saddle-Node Limit Cycle in a Leech Neuron Model[J]. Chin. Phys. Lett., 2011, 28(3): 030501. DOI: 10.1088/0256-307X/28/3/030501
|
YOOER Chi-Feng, WEI Fang, XU Jian-Xue, ZHANG Xin-Hua. Exotic Homoclinic Surface of a Saddle-Node Limit Cycle in a Leech Neuron Model[J]. Chin. Phys. Lett., 2011, 28(3): 030501. DOI: 10.1088/0256-307X/28/3/030501
YOOER Chi-Feng, WEI Fang, XU Jian-Xue, ZHANG Xin-Hua. Exotic Homoclinic Surface of a Saddle-Node Limit Cycle in a Leech Neuron Model[J]. Chin. Phys. Lett., 2011, 28(3): 030501. DOI: 10.1088/0256-307X/28/3/030501
|