Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation

  • Received Date: May 30, 2010
  • Published Date: February 28, 2011
  • Approximate generalized conditional symmetry is developed to study the approximate symmetry reduction for initial-value problems of the extended KdV-Burgers equations with perturbation. These equations can be reduced to initial-value problems for some systems of first-order perturbed ordinary differential equations in terms of a new approach. Complete classification theorems are obtained and an example is taken to show the main reduction procedure.
  • Article Text

  • [1] Cole J D 1968 Perturbation Methods in Applied Mathematics (Walthma: Blaisdell Publishing Company)
    [2] Van Dyke M 1975 Perturbation Methods in Fluid Mechanics (Stanford: CA: Parabolic Press)
    [3] Nayfeh A H 2000 Perturbation Methods (New York: John Wiley and Sons)
    [4] Olver P J 1993 Applications of Lie Groups to Differential Equations (New York: Springer)
    [5] Baikov V A, Gazizov R K and Ibragimov N H 1989 Itogi, Naukii Tekhniki, Seriya Sovremennye probhemy Matematiki, Noveishie Dostizheniya 34 85
    [6] Ibragimov N H CRC Handbook of Lie Group Analysis of Differential Equations (Boca Raton, FL: Chemical Rubber Company) vol 3
    [7] Baikov V A, Gazizov R K and Ibragimov N H 1988 Math. Sb. 136 435 (Engl. Transl. 1989 Math. USSR Sb. 64 427)
    [8] Baikov V A et al 1994 J. Math. Phys. 35 6525
    [9] Fushchich W I and Shtelen W M 1999 J. Phys. A: Math. Gen. 22 L887
    [10] Mahomed F M and Qu C Z 1999 J. Phys. A: Math. Gen. 33 343
    [11] Kara A H et al 2000 J. Phys. A: Math. Gen. 33 6601
    [12] Zhang S L and Qu C Z 2006 Chin. Phys. Lett. 23 527
    [13] Zhao Y et al 2009 Chin. Phys. Lett. 26 100201
    [14] Zhdanov R Z and Andreitsev A Yu 2000 J. Phys. A: Math. Gen. 33 5763
  • Related Articles

    [1]S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay [J]. Chin. Phys. Lett., 2012, 29(3): 030202. doi: 10.1088/0256-307X/29/3/030202
    [2]WANG Hong, TIAN Ying-Hui, CHEN Han-Lin. Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation [J]. Chin. Phys. Lett., 2011, 28(2): 020205. doi: 10.1088/0256-307X/28/2/020205
    [3]ZHAO Yuan, ZHANG Shun-Li, LOU Sen-Yue. Approximate Symmetry Reduction and Infinite Series Solutions to the Nonlinear Wave Equation with Damping [J]. Chin. Phys. Lett., 2009, 26(10): 100201. doi: 10.1088/0256-307X/26/10/100201
    [4]JIAO Xiao-Yu, YAO Ruo-Xia, LOU Sen-Yu. Approximate Homotopy Direct Reduction Method: Infinite Series Reductions to Perturbed mKdV Equations [J]. Chin. Phys. Lett., 2009, 26(4): 040202. doi: 10.1088/0256-307X/26/4/040202
    [5]JIA Man, WANG Jian-Yong, LOU Sen-Yue. Approximate Symmetry Reduction to the Perturbed One-Dimensional Nonlinear Schrödinger Equation [J]. Chin. Phys. Lett., 2009, 26(2): 020201. doi: 10.1088/0256-307X/26/2/020201
    [6]ZHANG Shun-Li, LI Ji-Na. Initial-value Problems for Extended KdV--Burgers Equations via Generalized Conditional Symmetries [J]. Chin. Phys. Lett., 2007, 24(6): 1433-1436.
    [7]ZHANG Shun-Li, WANG Peng-Zhou, QU Chang-Zheng. Approximate Generalized Conditional Symmetries for the Perturbed General KdV--Burgers Equation [J]. Chin. Phys. Lett., 2006, 23(10): 2625-2628.
    [8]ZHANG Shun-Li, QU Chang-Zheng. Approximate Generalized Conditional Symmetries for the Perturbed Nonlinear Diffusion--Convection Equations [J]. Chin. Phys. Lett., 2006, 23(3): 527-530.
    [9]MA Chang-Feng. A New Lattice Boltzmann Model for KdV-Burgers Equation [J]. Chin. Phys. Lett., 2005, 22(9): 2313-2315.
    [10]WANG Xinyi, LU Yuekai. EXACT SOLUTIONS OF THE EXTENDED BURGERS-FISHER EQUATION [J]. Chin. Phys. Lett., 1990, 7(4): 145-147.

Catalog

    Article views (2) PDF downloads (665) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return