Effect of Substrate Temperature on the Structural, Electrical and Optical Properties of Nanocrystalline Silicon Films in Hot-Filament Chemical Vapor Deposition

  • Received Date: September 09, 2010
  • Published Date: January 31, 2011
  • Hydrogenated nanocrystalline silicon films are deposited onto glass substrates at different substrate temperatures (140–400 °C) by hot−filament chemical vapor deposition. The effect of substrate temperature on the structural properties are investigated. With an increasing substrate temperature, the Raman crystalline volume fraction increases, but decreases with a further increase. The maximum Raman crystalline volume fraction of the nanocrystalline silicon films is about 74% and also has the highest microstructural factor (R=0.89) at a substrate temperature of 250 °C. The deposition rate exhibits a contrary tendency to that of the crystalline volume fraction. The continuous transition of the film structures from columnar to agglomerated is observed at a substrate temperature of 300 °C. The optical band gaps of the grown thin films declines (from 1.89 to 1.53 eV) and dark electrical conductivity increases (from about 1010 to about 10−6 S/cm) with the increasing substrate temperature.
  • Article Text

  • [1] Veprek S and Maecek V 1968 Solid-State Electron. 11 683
    [2] Meirav U et al 1990 Phys. Rev. Lett. 65 771
    [3] Matins R et al 1997 Thin Solid Films 303 47
    [4] He Y L et al 1994 J. Appl. Phys. 75 797
    [5] Yamamoto K et al 1990 Mater. Res. Soc. Sym. Proc. 164 161
    [6] Sheng S R et al 2001 Mater. Res. Soc. Sym. Proc. 664 A23.4.1
    [7] Losurdo M et al 2000 J. Appl. Phys. 88 2408
    [8] Iqbal Z and Vepiek S 1982 J. Phys. C: Solid State Phys. 15 377
    [9] Veprek S et al 1987 Phys. Rev. B 36 3344
    [10] Yue G et al 1999 Appl. Phys. Lett. 75 492
    [11] Veprek S et al 1982 Phil. Mag. B 45 137
    [12] Matsumura H et al 2001 Jpn. J. Appl. Phys. 40 L289
    [13] Heya A et al 2000 J. Non-Cryst. Solids 266–269 619
    [14] Yamada A et al 1989 Jpn. J. Appl. Phys. 28 L2284
    [15] Tsai C C et al 1989 Mater. Res. Sot. Sym. Proc. 149 297
    [16] Hu Y H et al 2005 Chin. Phys. 14 1457
    [17] Wagner H and Beyer W 1983 Solid State Commun. 48 585
    [18] Liu G H et al 2007 Chin. Phys. 16 588
    [19] Webb J D et al 1999 Mater. Res. Soc. Sym. Proc. 557 311
    [20] David L Y et al 2007 Appl. Phys. Lett. 90 081923
    [21] Tauc J et al 1966 Phys. Status Solidi 15 627
    [22] Wu Y et al 1996 Phys. Rev. Lett. 77 2049
    [23] Koyel Bhattacharya and Das D 2008 J. Phys. D: Appl. Phys. 41 155420
    [24] Grebner S et al 1993 Mater. Res. Soc. Sym. Proc. 283 513
    [25] Petritz R L 1956 Phys. Rev. 104 1508
    [26] Seto J Y W 1975 J. Appl. Phys. 46 5247
    [27] Baccarani G et al 1978 J. Appl. Phys. 49 5565
  • Related Articles

    [1]GUO Xiao-Song, BAO Zhong, ZHANG Shan-Shan, XIE Er-Qing. A Novel Model of the H Radical in Hot-Filament Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2011, 28(2): 028101. doi: 10.1088/0256-307X/28/2/028101
    [2]ZHANG Chun-Mei, ZHENG Yan-Bin, JIANG Zhi-Gang, LV Xian-Yi, HOU Xue, HU Shuang, LIU Jun-Wei. Effect of CO2 Addition on Preparation of Diamond Films by Direct-Current Hot-Cathode Plasma Chemical Vapor Deposition Method [J]. Chin. Phys. Lett., 2010, 27(8): 088103. doi: 10.1088/0256-307X/27/8/088103
    [3]YU Wei, WANG Bao-Zhu, LU Wan-Bing, YANG Yan-Bin, HAN Li, FU Guang-Sheng. Growth of Nanocrystalline Silicon Films by Helicon Wave Plasma Chemical Vapour Deposition [J]. Chin. Phys. Lett., 2004, 21(7): 1320-1322.
    [4]LIN Xuan-Ying, HUANG Chuang-Jun, LIN Kui-Xun, YU Yun-Peng, YU Chu-Ying, CHI Ling-Fei. Low-Temperature Growth of Polycrystalline Silicon Films bySiCl4/H2 rf Plasma Enhanced Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2003, 20(10): 1879-1882.
    [5]MA Yan, DU Guo-Tong, YANG Shu-Ren, YANG Tian-Peng, YANG Hong-Jun, YANG Xiao-Tian, ZHAO Bai-Jun, LIU Da-Li. Effect of VI/II Ratio on Structure and Optoelectrical Properties of Zinc Oxide Thin Films Deposited by Metal-Organic Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2003, 20(7): 1155-1157.
    [6]WANG Wan-lu, LIAO Ke-jun, FENG Bin, ZHANG Zhi. Growth of Oriented Heteroepitaxial Diamond Films on Si(100) via Electron Emission in Hot Filament Chemical Vapor Deposition [J]. Chin. Phys. Lett., 1998, 15(6): 460-462.
    [7]SHANG Nai-gui, FANG Rong-chuan, HANG Yin, LI Jin-qiu, HAN Si-jin, SHAO Qing-yi, CUI Jing-biao, XU Cun-yi. Investigation of Diamond Films Deposited on LaAIO3 Single Crystal Substrates by Hot Filament Chemical Vapor Deposition [J]. Chin. Phys. Lett., 1998, 15(2): 146-148.
    [8]LIN Zhang-da (Zhangda Lin), CHEN Yan, CHEN Qi-jin, S. T. Lee, Y. W. Lam. Very Low Pressure Nucleation of Diamond on Mirror-Smooth Silicon in Hot Filament Chemical Vapor Deposition System [J]. Chin. Phys. Lett., 1996, 13(10): 750-752.
    [9]JIN Zengsun, LU Xianyi, ZOU Guangtian. Heteroepitaxial Growth of Diamond Film on Cubic Boron NitrideSubstrate by Hot-Filament Chemical Vapour Deposition [J]. Chin. Phys. Lett., 1995, 12(2): 120-122.
    [10]GAO Chunxiao, ZOU Guangtian, JIN Zengsun. Direct Deposition of Polycrystalline Diamond Films on the Si( 100) Mirror Surface by Hot Filament Chemical Vapor Deposition [J]. Chin. Phys. Lett., 1994, 11(5): 317-320.

Catalog

    Article views (2) PDF downloads (472) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return