Effects of Dzyaloshinskii–Moriya Interaction on Optimal Dense Coding Using a Two-Qubit Heisenberg XXZ Chain with and without External Magnetic Field

  • Received Date: October 18, 2010
  • Published Date: January 31, 2011
  • We investigate the effects of different components of the Dzyaloshinskii–Moriya (DM) anisotropic antisymmetric interaction on optimal dense coding with a two-qubit Heisenberg XXZ chain in the presence and in the absence of external magnetic fields. The anisotropic coupling parameter Δ, isotropic coupling parameter J, and the DM interaction parameters are found to be effective for optimal dense coding, while the magnetic field turns out to be destructive. Moreover, the results show that the case of antiferromagnetic (AFM) is more ideal for optimal dense coding than the case of ferromagnetic (FM) in general. In the case of AFM, by comparison of the two cases with the same fixed x− and z−component parameters of DM interaction (Dx and Dz), the appropriate model for optimal dense coding is indicated for the different value intervals of Δ. Comparison of the effects of Dz and Dx on optimal dense coding is made and their dominant regions are clarified.
  • Article Text

  • [1] Neilsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University)
    [2] Ekert A K 1991 Phys. Rev. Lett. 67 661
    [3] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895
    [4] Bennett C H et al 1992 Phys. Rev. Lett. 69 2881
    [5] Bareno A and Ekert A K 1995 J. Mod. Opt. 42 1253
    [6] Braunstein S L et al 2000 Phys. Rev. A 61 042302
    [7] Bose S et al 2000 J. Mod. Opt. 47 291
    [8] Qiu L et al 2009 Physica Scripta 79 015005
    [9] Zhang G F 2009 Physica Scripta 79 015001
    [10] Mattle K et al 1996 Phys. Rev. Lett. 76 4656
    [11] Hiroshima T 2001 J. Phys. A: Math. Gen. 34 6907
    [12] Holevo A S 1973 Probl. Inf. Transm. 9 177
    [13] Nielson M A 2001 Phys. Rev. A 63 022114
    [14] Wang X G 2001 Phys. Rev. A 64 012313
    [15] Kamta G L et al 2002 Phys. Rev. Lett. 88 107901
    [16] O'Connor K M et al 2001 Phys. Rev. A 63 052302
    [17] Abliz A et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 215503
    [18] Zhang G F et al 2005 Opt. Commun. 245 457
    [19] Cai J T et al 2010 Opt. Commun. 283 4415
    [20] Li D C et al 2008 J. Phys: Condens. Matter 20 325229
    [21] Kargarian M et al 2009 Phys. Rev. A 79 042319
    [22] Ma X S 2008 Opt. Commun. 281 484
    [23] Qiu L, Wang A M and Ma X S 2007 Physica A 383 325
  • Related Articles

    [1]HU Wen-Juan, XIE Fen-Yan, CHEN Qiang, WENG Jing. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma [J]. Chin. Phys. Lett., 2008, 25(10): 3805-3807.
    [2]HAO Xiao-Peng, WANG Bao-Yi, YU Run-Sheng, WEI Long, WANG Hui, ZHAO De-Gang, HAO Wei-Chang. Evolution of Structural Defects in SiOx Films Fabricated by Electron Cyclotron Resonance Plasma Chemical Vapour Deposition upon Annealing Treatment [J]. Chin. Phys. Lett., 2008, 25(3): 1034-1037.
    [3]LIN Ying-Bin, YANG Yan-Min, XU Jian-Ping, LIU Xing-Chong, WANGJian-Feng, HUANG Zhi-Gao, ZHANG Feng-Ming, DU You-Wei. Photoluminescence of ZnO and Mn-Doped ZnO Polycrystalline Films Prepared by Plasma Enhanced Chemical Vapour Deposition [J]. Chin. Phys. Lett., 2007, 24(9): 2685-2688.
    [4]LIN Ying-Bin, LU Zhi-Hai, ZOU Wen-Qin, LU Zhong-Lin, XU Jian-Ping, JI Jian-Ti, LIU Xing-Chong, WANG Jian-Feng, LV Li-Ya, ZHANG Feng-Ming, DU You-Wei, HUANG Zhi-Gao, ZHENG Jian-Guo. Room-Temperature Ferromagnetic ZnMnO Thin Films Synthesized by Plasma Enhanced Chemical Vapour Deposition Method [J]. Chin. Phys. Lett., 2007, 24(7): 2085-2087.
    [5]Department of Physics, Lanzhou University, Lanzhou. Al-Induced Crystallization Growth of Si Films by Inductively Coupled Plasma Chemical Vapour Deposition [J]. Chin. Phys. Lett., 2006, 23(12): 3338-3340.
    [6]YU Wei, WANG Bao-Zhu, LU Wan-Bing, YANG Yan-Bin, HAN Li, FU Guang-Sheng. Growth of Nanocrystalline Silicon Films by Helicon Wave Plasma Chemical Vapour Deposition [J]. Chin. Phys. Lett., 2004, 21(7): 1320-1322.
    [7]LIN Xuan-Ying, HUANG Chuang-Jun, LIN Kui-Xun, YU Yun-Peng, YU Chu-Ying, CHI Ling-Fei. Low-Temperature Growth of Polycrystalline Silicon Films bySiCl4/H2 rf Plasma Enhanced Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2003, 20(10): 1879-1882.
    [8]WANG Peng-Fei, DING Shi-Jin, ZHANG Wei, ZHANG Jim-Yun, WANG Ji-Tao, WEI William Lee. FTIR Characterization of Fluorine Doped Silicon Dioxide Thin Films Deposited by Plasma Enhanced Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2000, 17(12): 912-914.
    [9]LIU Yi-chun, LIU Chun-guang, CHEN Da-wei, LIU Yu-xue, BAI Yu-bai, LI Tie-jin. Photoluminescence Properties of a-SiC:H Films Grown by Plasma Enhanced Chemical Vapor Deposition from SiH4+C2H2 Gas Mixtures [J]. Chin. Phys. Lett., 1998, 15(11): 837-839.
    [10]MA Tian-fu, CHEN Kun-ji, DU Jia-fang, XU Jun, LI Wei, HUANG Xin-fan. Blue Light Emission from Hydrogenated Amorphous Silicon CarbidePrepared by Xylene Source in Plasma-Enhanced Chemical Vapour Deposition System [J]. Chin. Phys. Lett., 1996, 13(12): 947-949.

Catalog

    Article views (2) PDF downloads (517) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return