Loss of Exchange Symmetry in Multiqubit States under Ising Chain Evolution

  • Keeping in view of importance of exchange symmetry aspects in studies on spin squeezing of multiqubit states, we show that the one-dimensional Ising Hamiltonian with nearest neighbor interactions does not retain the exchange symmetry of initially symmetric multiqubit states. Specifically we show that among 4−qubit states obeying exchange symmetry, all states except W class (and their linear combination) lose their symmetry under time evolution with Ising Hamiltonian. Attributing the loss of symmetry of the initially symmetric states to rotational asymmetry of the one-dimensional Ising Hamiltonian with more than 3 qubits, we indicate that all N−qubit states (N≥5) obeying permutation symmetry lose their symmetry after time evolution with Ising Hamiltonian.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return