Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation
-
Abstract
By using the modified Clarkson–Kruskal (CK) direct method, we obtain the non-Lie symmetry group of the two-dimensional KdV-Burgers equation. Under some constraint conditions, Lie point symmetry is also obtained. Through the symmetry group, some new exact solutions of the two-dimensional KdV-Burgers equation are found.
Article Text
-
-
-
About This Article
Cite this article:
WANG Hong, TIAN Ying-Hui, CHEN Han-Lin. Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 020205. DOI: 10.1088/0256-307X/28/2/020205
WANG Hong, TIAN Ying-Hui, CHEN Han-Lin. Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 020205. DOI: 10.1088/0256-307X/28/2/020205
|
WANG Hong, TIAN Ying-Hui, CHEN Han-Lin. Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 020205. DOI: 10.1088/0256-307X/28/2/020205
WANG Hong, TIAN Ying-Hui, CHEN Han-Lin. Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 020205. DOI: 10.1088/0256-307X/28/2/020205
|