Scattering Behavior of Waveguide Channels of a New Coupled Integrable Dispersionless System

  • Received Date: June 09, 2011
  • Published Date: November 30, 2011
  • Based upon the powerful Hirota method for unearthing soliton solutions to nonlinear partial differential evolution equations, we investigate the scattering properties of a new coupled integrable dispersionless system while surveying the interactions between its self-confined travelling wave solutions. As a result, we ascertain three types of scattering features depending strongly upon a characteristic parameter. Using such findings to depict soliton solutions with nonzero angular momenta, we derive an extended form of the dispersionless system, which is valuable for further physical applications.
  • Article Text

  • [1] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240
    [2] Anderson R L and Ibragimov N H 1979 Lie-Bäcklund Transformations in Applications (Philadelphia: SIAM Studies in Applied Mathematics)
    [3] Hermann R 1976 The Geometry of Nonlinear Differential Equations, Bäcklund Transformation, and Solitons Part A Interdisciplinary Mathematics (Brookline: Mathematics Science Press)
    [4] Davis H T 1962 Introduction to Nonlinear Differential And Integral Equations (New York: Dover)
    [5] Lax P D 1968 Commun. Pure Appl. Math. 21 467
    [6] Olver P J 1977 J. Math. Phys. 18 1212
    [7] Fuchssteiner B and Fokas A S 1981 Physica D 4 47
    [8] Fokas A S and Ablowitz M 1983 The Inverse Scattering Transformation for Multidimensional (2+1)-Problems in Lecture Notes in Physics (Berlin: Springer)
    [9] Gardner C S, Greene J M, Kruskal M D and Miura R M 1967 Phys. Rev. Lett. 19 1095
    [10] Wahlquist H D and Estabrook F B 1975 J. Math. Phys. 16 1
    [11] Hirota R 1971 Phys. Rev. Lett. 27 1192
    [12] Zakharov V E and Shabat A B 1975 Funct. Anal. Appl. 8 226
    [13] Wazwaz A M 2008 Appl. Math. Comput. 200 437
    [14] Wazwaz A M 2008 Appl. Math. Comput. 201 168
    [15] Kakuhata H and Konno K J 1999 J. Phys. Soc. Jpn. 68 757
    [16] Kuetche V K, Bouetou T B and Kofane T C 2007 J. Phys. Soc. Jpn. 76 126001
    [17] Zhaqilao, Zhao Y L and Li Z B 2009 Chin. Phys. B 18 1780
    [18] Kakuhata H and Konno K 1996 J. Phys. Soc. Jpn. 65 340
    [19] Bouetou T B, Souleymanou A, Kuetche V K, Mouna F and Kofane T C 2011 J. Math. Anal. Appl. 377 269
    [20] Souleymanou A, Bouetou T B, Kuetche V K, Mouna F and Kofane T C 2011 Chin. Phys. Lett. 28 020204
    [21] Kuetche V K, Bouetou T B and Kofane T C 2008 Phys. Lett. A 372 665
    [22] Kuetche V K, Bouetou T B and Kofane T C 2007 J. Phys. Soc. Jpn. 76 073001
  • Related Articles

    [1]Yunjing Gao, Jianda Wu. Quantum magnetism from low-dimensional quantum Ising models with quantum integrability [J]. Chin. Phys. Lett., 2025, 42(4): 047501. doi: 10.1088/0256-307X/42/4/047501
    [2]LI Zhi-Ming, HAO Yue, ZHANG Jin-Cheng, CHEN Chi, CHANG Yong-Ming, XU Sheng-Rui, BI Zhi-Wei. Optimization and Finite Element Analysis of the Temperature Field in a Nitride MOCVD Reactor by Induction Heating [J]. Chin. Phys. Lett., 2010, 27(7): 070701. doi: 10.1088/0256-307X/27/7/070701
    [3]ZHU Kun-Yan, TAN Lei, GAO Xiang, WANG Daw-Wei. Quantum Fluids of Self-Assembled Chains of Polar Molecules at Finite Temperature [J]. Chin. Phys. Lett., 2008, 25(1): 48-51.
    [4]LI Hong-Qi, XU Xing-Lei, WANG Ji-Suo. Quantum Fluctuations of Current and Voltage for Mesoscopic Quartz Piezoelectric Crystal at Finite Temperature [J]. Chin. Phys. Lett., 2006, 23(11): 2892-2895.
    [5]PAN Rongshi, SU Rukeng, SU Chenggang. Scalar Wormhole at Finite Temperature [J]. Chin. Phys. Lett., 1995, 12(5): 261-264.
    [6]ZHENG Guotong, SU Rukeng. NNδ Interaction at Finite Temperature [J]. Chin. Phys. Lett., 1994, 11(8): 469-471.
    [7]DING Haogang, HUANG Chaoguang, ZHANG Yuan Zhong. On Representation Transformation in Einstein Quantum Cosmology [J]. Chin. Phys. Lett., 1993, 10(4): 201-204.
    [8]XIANG Yingming, LIU Liao. Third Quantization of a Solvable Model in Quantum Cosmology in Brans-Dicke Theory [J]. Chin. Phys. Lett., 1991, 8(1): 52-55.
    [9]ZHU zonghong, HUANG Chaoguang, LIU Liao. A SOLVABLE MODEL IN QUANTUM COSMOLOGY IN THE BRANS-DICKES THEORY [J]. Chin. Phys. Lett., 1990, 7(10): 477-480.
    [10]HUANG Fengyi. POSSIBLE EXPLANATION OF THE PLATEAU WIDTH IN THE QUANTUM HALL EFFECT AT FINITE TEMPERATURE [J]. Chin. Phys. Lett., 1989, 6(12): 541-545.

Catalog

    Article views (4) PDF downloads (434) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return