High Performance Polymer Field-Effect Transistors Based on Thermally Crosslinked Poly(3-hexylthiophene)

  • The performance of polymer field-effect transistors is improved by thermal crosslinking of poly(3-hexylthiophene), using ditert butyl peroxide as the crosslinker. The device performance depends on the crosslinker concentration significantly. We obtain an optimal on/off ratio of 105 and the saturate field−effect mobility of 0.34 cm2V−1s−1, by using a suitable ratios of ditert butyl peroxide, 0.5 wt% of poly(3-hexylthiophene). The microstructure images show that the crosslinked poly(3-hexylthiophene) active layers simultaneously possess appropriate crystallinity and smooth morphology. Moreover, crosslinking of poly(3-hexylthiophene) prevents the transistors from large threshold voltage shifts under ambient bias-stressing, showing an advantage in encouraging device environmental and operating stability.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return