Chaos Suppression in a Sine Square Map through Nonlinear Coupling
-
Abstract
We study a pair of nonlinearly coupled identical chaotic sine square maps. More specifically, we investigate the chaos suppression associated with the variation of two parameters. Two-dimensional parameter-space regions where the chaotic dynamics of the individual chaotic sine square map is driven towards regular dynamics are delimited. Additionally, the dynamics of the coupled system is numerically characterized as the parameters are changed.
Article Text
-
-
-
About This Article
Cite this article:
Eduardo L. Brugnago, Paulo C. Rech. Chaos Suppression in a Sine Square Map through Nonlinear Coupling[J]. Chin. Phys. Lett., 2011, 28(11): 110506. DOI: 10.1088/0256-307X/28/11/110506
Eduardo L. Brugnago, Paulo C. Rech. Chaos Suppression in a Sine Square Map through Nonlinear Coupling[J]. Chin. Phys. Lett., 2011, 28(11): 110506. DOI: 10.1088/0256-307X/28/11/110506
|
Eduardo L. Brugnago, Paulo C. Rech. Chaos Suppression in a Sine Square Map through Nonlinear Coupling[J]. Chin. Phys. Lett., 2011, 28(11): 110506. DOI: 10.1088/0256-307X/28/11/110506
Eduardo L. Brugnago, Paulo C. Rech. Chaos Suppression in a Sine Square Map through Nonlinear Coupling[J]. Chin. Phys. Lett., 2011, 28(11): 110506. DOI: 10.1088/0256-307X/28/11/110506
|