Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrödinger Equations
1 Institute of Applied Physics and Computational Mathematics, Beijing 100088
2 The Graduate School of China Academy of Engineering Physics, Beijing 100088
Received Date:
May 11, 2011
Published Date:
October 31, 2011
Abstract
We construct explicit rogue wave solutions, breather solitons, and rogue-bright-dark solutions for the coupled non-linear Schrödinger equations by the Darboux transformation.
Article Text
References
[1]
Agrawal G P 1995 Nonlinear Fiber Optics (New York: Academic)
[2]
Scott A C 1984 Physica Scripta 29 279
[3]
E P Bashkin and Vagov A V 1997 Phys. Rev. B 56 6207
[4]
Yan Z 2011 Financial Rogue Waves Appearing in the Coupled Nonlinear Volatility and Option Pricing Model arxiv:1101.3107v1
[5]
K Dysthe, Krogstad H E and Müller P 2008 Annu. Rev. Fluid Mech. 40 287
[6]
Manakov S V 1973 ZETP 65 505
[7]
Forest M G, McLaughlin D W, Muraki D J and Wright O C 2000 J. Non. Sci. 10 291
[8]
Wright O C and Forest M G 2000 Physica D 141 104
[9]
Forest M G, Sheu S P and Wright O C 2000 Phys. Lett. A 266 24
[10]
Osborne A R 2009 Nonlinear Ocean Waves (New York: Academic)
[11]
Peregrine D H 1983 J. Sust. Math. Soc. B: Appl. Math. 25 16
[12]
Akhmediev N, Ankiewicz A and Soto-Crespo J M 2009 Phys. Rev. E 80 026601
[13]
Guo B and Ling L 2011 Acta Mathematica Scientia (submitted)
[14]
Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (New York: Springer)
[15]
Gu C H, Hu H S and Zhou Z X 2005 Darboux Transformations in Integrable Systems: Theory and Their Applications (Berlin: Springer)
[16]
Doktorov E V and Leble S B 2007 A Dressing Method in Mathmatical Physics (New York: Springer)
[17]
Ling L and Liu Q P 2010 J. Phys. A: Math. Theor. 43 434023
Related Articles
[1] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole [J]. Chin. Phys. Lett., 2010, 27(2): 020401. doi: 10.1088/0256-307X/27/2/020401
[2] MA Chun-Rui, GUI Yuan-Xing, WANG Fu-Jun. Quintessence Contribution to a Schwarzschild Black Hole Entropy [J]. Chin. Phys. Lett., 2007, 24(11): 3286-3289.
[3] DING Chi-Kun, JING Ji-Liang. Statistical-Mechanical Entropies of Schwarzschild Black Hole due to Arbitrary Spin Fields in Different Coordinates [J]. Chin. Phys. Lett., 2007, 24(8): 2189-2192.
[4] LIU Cheng-Zhou. Holographic Entropy Bound of a Nonstationary Black Hole [J]. Chin. Phys. Lett., 2006, 23(5): 1092-1095.
[5] ZHANG Yun, JING Ji-Liang. Dirac Quasinormal Modes of the Schwarzschild--anti-de Sitter Black Hole with a Global Monopole [J]. Chin. Phys. Lett., 2005, 22(10): 2496-2499.
[6] HAN Yi-Wen, LIU Shou-Yu. Entropy of Nonstatic Black Hole with the Internal Global Monopole and the Generalized Uncertainty Relation [J]. Chin. Phys. Lett., 2005, 22(7): 1608-1610.
[7] GAO Chang-Jun, SHEN You-Gen. De Broglie-Bohm Quantization of the Reissner-Nordstrom Black Hole with a Global Monopole in the Background of de Sitter Space-Time [J]. Chin. Phys. Lett., 2002, 19(4): 477-480.
[8] JING Ji-liang. Thermodynamical and Statistical-Mechanical Entropies of the General Static Spherically Symmetric Black Hole [J]. Chin. Phys. Lett., 1998, 15(4): 240-242.
[9] JING Ji-liang. Quantum Corrections to the Entropy of the Black Hole with a Global Monopole or a Cosmic String [J]. Chin. Phys. Lett., 1997, 14(7): 495-498.
[10] JING Jiliang, YU Hongwei, WANG Yongjiu. The Motion of a Gyroscope Freely Falling Along the Radial Geodesic in the Space-Time of a Black Hole with a Global Monopole [J]. Chin. Phys. Lett., 1993, 10(7): 445-448.
About This Article
Cite this article:
GUO Bo-Ling, LING Li-Ming. Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrödinger Equations[J].
Chin. Phys. Lett. , 2011, 28(11): 110202.
DOI: 10.1088/0256-307X/28/11/110202
GUO Bo-Ling, LING Li-Ming. Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrödinger Equations[J]. Chin. Phys. Lett. , 2011, 28(11): 110202. DOI: 10.1088/0256-307X/28/11/110202