Cu2SixSn1−xS3 Thin Films Prepared by Reactive Magnetron Sputtering For Low-Cost Thin Film Solar Cells

  • We report the preparation of Cu2SixSn1xS3 thin films for thin film solar cell absorbers using the reactive magnetron co−sputtering technique. Energy dispersive spectrometer and x-ray diffraction analyses indicate that Cu2Si1xSnxS3 thin films can be synthesized successfully by partly substituting Si atoms for Sn atoms in the Cu2SnS3 lattice, leading to a shrinkage of the lattice, and, accordingly, by 2θ shifting to larger values. The blue shift of the Raman peak further confirms the formation of Cu2SixSn1xS3. Environmental scanning electron microscope analyses reveal a polycrystalline and homogeneous morphology with a grain size of about 200–300 nm. Optical measurements indicate an optical absorption coefficient of higher than 104 cm−1 and an optical bandgap of 1.17±0.01 eV.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return