Frequency-Locking in a Spatially Extended Predator-Prey Model
-
Abstract
The study is concerned with the effect of variable dispersal rates on Turing instability of a spatial Holling–Tanner system. A series of numerical simulations show that the oscillatory Turing pattern can emerge due to period diffusion coefficient. Moreover, we find that when the amplitude is above a threshold, 1:1 frequency-locking oscillation can be obtained. The results show that period diffusion coefficient plays an important role on the pattern formation in the predator-prey system.
Article Text
-
-
-
About This Article
Cite this article:
YU Cun-Juan, TAN Ying-Xin. Frequency-Locking in a Spatially Extended Predator-Prey Model[J]. Chin. Phys. Lett., 2011, 28(1): 018701. DOI: 10.1088/0256-307X/28/1/018701
YU Cun-Juan, TAN Ying-Xin. Frequency-Locking in a Spatially Extended Predator-Prey Model[J]. Chin. Phys. Lett., 2011, 28(1): 018701. DOI: 10.1088/0256-307X/28/1/018701
|
YU Cun-Juan, TAN Ying-Xin. Frequency-Locking in a Spatially Extended Predator-Prey Model[J]. Chin. Phys. Lett., 2011, 28(1): 018701. DOI: 10.1088/0256-307X/28/1/018701
YU Cun-Juan, TAN Ying-Xin. Frequency-Locking in a Spatially Extended Predator-Prey Model[J]. Chin. Phys. Lett., 2011, 28(1): 018701. DOI: 10.1088/0256-307X/28/1/018701
|