Loading [MathJax]/jax/output/SVG/jax.js

Dynamic Fracture Toughness and Failure Mechanisms of ZnO Whiskers Secondary Reinforced Composites

  • Received Date: May 25, 2010
  • Published Date: July 31, 2010
  • Quasi-static and dynamic fracture properties and damage mechanism of glass fiber polymer composites embedded with different mass percentages of ZnO whiskers are investigated by using an Instron Testing machine and a Split-Hopkinson pressure bar. According to the experimental results and linear fracture mechanics, the quasi-static fracture toughness KIc and the dynamic fracture toughness KId under various impact velocities of specimens are obtained. Fracture mechanism is investigated by fractography analysis with a scanning electron microscope. The experimental results show that the mass percentage of ZnOw has little influence on the quasi-static fracture toughness, but a little influence on the dynamic fracture toughness and time of initial fracture point of specimens by the reason of various fracture mechanisms.
  • Article Text

  • [1] Chen E F, Tian Y J and Zhou B L 2003 Polym. Mater. Sci. Eng. 19 111 (in Chinese)
    [2] Zhou Z W et al 1999 J. Mater. Process. Tech. 90 415
    [3] Lin H B et al 2008 Scripta Mater. 59 780
    [4] Zhou Z W et al 2004 Polym. Mater. Sci. Eng. 20 202
    [5] Cao M S et al 2007 Appl. Phys. Lett. 91 203110
    [6] Geary W et al 2000 Compos Sci. Technol. 60 633
    [7] Fernandez-Canteli A, Arguelles A, Vina J, Ramulu M and Kobayashi A S 2002 Compos. Sci. Technol. 62 1315
    [8] Han X P, Han S L and Yu L 2003 Compos. Sci. Technol. 63 155
    [9] Sun H C et al 1996 J. Exp. Mech. 11 141 (in Chinese)
    [10] Cao M S, Zhang T F, Qiu C J and Zhu J 2003 Chin. J. Mater. Res. 17 365 (in Chinese)
    [11] Han X P, Cao X A and Zhu X P 2007 Acta Mater. Compos. Sin. 24 137 (in Chinese)
    [12] Cao X A, Han X P and Zhu X P 2007 J. Northwestern Polytechnol. University 25 65 (in Chinese)
    [13] Li Y L and Liu Y Y 1994 Acta Mech. Solida Sin. 15 75 (in Chinese)
    [14] Zhang X X, Jiang F C, Liu R T and Ou G B 2000 J. Harbin Engineering University 21 30 (in Chinese)
    [15] Guo W G, Li Y L and Liu Y Y 1997 Theor. Appl. Fract Mech. 26 29
    [16] Zhou Z W, Chu L S and Hu S C 2006 Mater. Sci. Eng. B: Solid State Mater. Adv. Technol. 126 93
    [17] Rong J L, Wang X, Cao M S and Zhou W 2009 Acta Mater. Compos. Sin. 29 76 (in Chinese)
    [18] Cao M S et al 2008 Chin. Phys. Lett. 25 2954
    [19] Rong J L et al 2010 Chin. Phys. Lett. 27 066201
    [20] Cao M S et al 2010 Compos. Struct. 92 2984
  • Related Articles

    [1]Ran Tao, Lin Li, Li-Jun Zhu, Yue-Dong Yan, Lin-Hai Guo, Xiao-Dong Fan, Chang-Gan Zeng. Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO3/SrTiO3 Heterostructures [J]. Chin. Phys. Lett., 2020, 37(7): 077301. doi: 10.1088/0256-307X/37/7/077301
    [2]M. R. Setare, D. Jahani. Quantum Hall Effect and Different Zero-Energy Modes of Graphene [J]. Chin. Phys. Lett., 2011, 28(9): 097302. doi: 10.1088/0256-307X/28/9/097302
    [3]HUANG Wei, WANG Zhao-Long, YAN Mu-Lin. Noncommutative Chern-Simons Description of the Fractional Quantum Hall Edge [J]. Chin. Phys. Lett., 2010, 27(6): 067304. doi: 10.1088/0256-307X/27/6/067304
    [4]LV Wei-Guo, CHU Zhao-Tan, ZHAO Xiao-Qing, FAN Yu-Xiu, SONG Ruo-Long, HAN Wei. Simulation of Electromagnetic Wave Logging Response in Deviated Wells Based on Vector Finite Element Method [J]. Chin. Phys. Lett., 2009, 26(1): 014102. doi: 10.1088/0256-307X/26/1/014102
    [5]TU Tao, ZHAO Yong-Jie, HAO Xiao-Jie, WANG Cheng-You, GUO Guang-Can, GUO Guo-Ping. Localization Exponent for the Second Landau Level in the Quantum Hall Effect [J]. Chin. Phys. Lett., 2008, 25(3): 1083-1086.
    [6]TU Tao, ZHAO Yong-Jie, GUO Guo-Ping, HAO Xiao-Jie, GUO Guang-Can. Form of Scaling Function in Quantum Hall Plateau Transitions [J]. Chin. Phys. Lett., 2007, 24(5): 1346-1349.
    [7]SHU Qiang, LIN Yao-Wang, XING Xiao-Dong, YAO Jiang-Hong, PI Biao, SHU Yong-Chun, WANG Zhan-Guo, XU Jing-Jun. Effect of Small-Angle Scattering on the Integer Quantum Hall Plateau [J]. Chin. Phys. Lett., 2006, 23(2): 436-438.
    [8]DUAN Yi-Shi, ZHANG Xiu-Ming, TIAN Miao. The Branch Process of Skyrmions in the Fractional Quantum Hall Effect [J]. Chin. Phys. Lett., 2005, 22(8): 2047-2051.
    [9]CHEN Yingjian. RELATION BETWEEN THE EFFECTS OF FINITE THICKNESS AND TILTED MAGNETIC FIELDS IN THE FRACTIONAL QUANTUM HALL EFFECT [J]. Chin. Phys. Lett., 1990, 7(11): 514-517.
    [10]HUANG Fengyi. POSSIBLE EXPLANATION OF THE PLATEAU WIDTH IN THE QUANTUM HALL EFFECT AT FINITE TEMPERATURE [J]. Chin. Phys. Lett., 1989, 6(12): 541-545.
  • Cited by

    Periodical cited type(6)

    1. Myers, S.A., Huang, H., Hussain, W. et al. Thermal activation signatures of the Anderson insulator and the Wigner solid forming near ν=1. Physical Review Research, 2024, 6(2): L022056. DOI:10.1103/PhysRevResearch.6.L022056
    2. Liu, X., Wu, M., Wang, R. et al. Interaction between Surface Acoustic Wave and Quantum Hall Effects. Chinese Physics Letters, 2024, 41(4): 047301. DOI:10.1088/0256-307X/41/4/047301
    3. Lin, W., Fan, X., Zhao, L. et al. Metastable charge distribution between degenerate Landau levels. Physical Review B, 2024, 109(3): 035305. DOI:10.1103/PhysRevB.109.035305
    4. Huang, H., Hussain, W., Myers, S.A. et al. Density Dependence of the Phases of the v = 1 Integer Quantum Hall Plateau in Low Disorder Electron Gases. Physica Status Solidi - Rapid Research Letters, 2024. DOI:10.1002/pssr.202400376
    5. Zhao, L., Lin, W., Chung, Y.J. et al. Dynamic Response of Wigner Crystals. Physical Review Letters, 2023, 130(24): 246401. DOI:10.1103/PhysRevLett.130.246401
    6. Li, J.-K., Wang, H.-Z., Zhang, J.-Y. et al. Quantum capacitance properties of the holes in planar germanium. Applied Physics Letters, 2023, 122(6): 063102. DOI:10.1063/5.0137292

    Other cited types(0)

Catalog

    Article views (3) PDF downloads (903) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return