Chaotic Dynamics in a Sine Square Map: High-Dimensional Case (N≥3)
-
Abstract
We study an N-dimensional system based on a sine square map and analyze the system behaviors of cases of dimension N≥3 with the tools of nonlinear dynamics. In the three-dimensional case, bifurcations in the parameter plane, invariant manifolds, critical manifolds and chaotic attractors are studied. Then we extend this study to the cases of higher dimension (N>3) to understand generalized properties of the system. The analysis and experimental results of the system demonstrate the existence of bounded chaotic orbits, which can be considered for secure transmissions.
Article Text
-
-
-
About This Article
Cite this article:
XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Danièle, TAHA Abdel-Kaddous, CHARGE Pascal. Chaotic Dynamics in a Sine Square Map: High-Dimensional Case (N≥3)[J]. Chin. Phys. Lett., 2010, 27(8): 080506. DOI: 10.1088/0256-307X/27/8/080506
XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Danièle, TAHA Abdel-Kaddous, CHARGE Pascal. Chaotic Dynamics in a Sine Square Map: High-Dimensional Case (N≥3)[J]. Chin. Phys. Lett., 2010, 27(8): 080506. DOI: 10.1088/0256-307X/27/8/080506
|
XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Danièle, TAHA Abdel-Kaddous, CHARGE Pascal. Chaotic Dynamics in a Sine Square Map: High-Dimensional Case (N≥3)[J]. Chin. Phys. Lett., 2010, 27(8): 080506. DOI: 10.1088/0256-307X/27/8/080506
XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Danièle, TAHA Abdel-Kaddous, CHARGE Pascal. Chaotic Dynamics in a Sine Square Map: High-Dimensional Case (N≥3)[J]. Chin. Phys. Lett., 2010, 27(8): 080506. DOI: 10.1088/0256-307X/27/8/080506
|