Molecular-Dynamics Simulations of Droplets on a Solid Surface
-
Abstract
By using a semi-empirical Lennard-Jones embedded-atom-method potential, we study the influence of many-body forces and atomic size mismatch on the wetting behavior of nano droplets on a solid surface. With molecular dynamics simulations, we find that the contact angle decreases with increasing many-body forces. The increase of atomic size mismatch between solid and liquid results in the decrease of contact angles. Our calculation also shows that the interface structure is strongly affected by the interaction between liquid and solid as well as the atomic size mismatch. For weak solid-liquid interaction, the interface layer of the droplet nearest to the solid exhibits a typical simple liquid structure regardless of the size mismatch. For strong solid-liquid interaction, evident ordering in the interface layer is observed for well matched cases.
Article Text
-
-
-
About This Article
Cite this article:
GAO Yu-Feng, SUN De-Yan. Molecular-Dynamics Simulations of Droplets on a Solid Surface[J]. Chin. Phys. Lett., 2010, 27(6): 066802. DOI: 10.1088/0256-307X/27/6/066802
GAO Yu-Feng, SUN De-Yan. Molecular-Dynamics Simulations of Droplets on a Solid Surface[J]. Chin. Phys. Lett., 2010, 27(6): 066802. DOI: 10.1088/0256-307X/27/6/066802
|
GAO Yu-Feng, SUN De-Yan. Molecular-Dynamics Simulations of Droplets on a Solid Surface[J]. Chin. Phys. Lett., 2010, 27(6): 066802. DOI: 10.1088/0256-307X/27/6/066802
GAO Yu-Feng, SUN De-Yan. Molecular-Dynamics Simulations of Droplets on a Solid Surface[J]. Chin. Phys. Lett., 2010, 27(6): 066802. DOI: 10.1088/0256-307X/27/6/066802
|