Precision Calculations of Atomic Polarizabilities: A Relevant Physical Quantity in Modern Atomic Frequency Standard

  • Received Date: January 24, 2010
  • Published Date: May 31, 2010
  • Electric dipole polarizabilities of atoms are very important in many different physical applications, such as the precision atomic frequency standard. Calculations of these properties are very important and challenging. We propose a calculation strategy to calculate the frequency dependent dipole polarizabilities with high precision variationally by using a set of high quality orbital bases where the electron correlations can be taken into account adequately. The static polarizabilities of the ground state of Na are calculated accurately by such a method and can be compared with precision experiment measurement directly. The calculation result is in excellent agreement with the available experimental measurements within about 0.1%, which demonstrates the validity of our strategy. Our calculation strategy has a wide usage, not only in polarizibilies, but also in other fields such as theoretical treatment of electron-atom scattering processes. Using the same orbital bases, we carry out precision calculation of Na- affinities. Our calculated affinity is in excellent agreement with precision laser spectroscopy measurements within 0.1%.
  • Article Text

  • [1] Jefferts S et al 2002 Metrologia 39 321
        Weyers S et al 2001 Metrologia 38 343
    [2] Gallagher T F et al 1979 Phys. Rev. Lett. 42 835
        Itano W M et al 1982 Phys. Rev. A 25 1233
    [3] Levi F et al 2004 Phys. Rev. A 70 033412
    [4] Hachisu H, et al 2008 Phys. Rev. Lett. 100 053001
        Porsev S G and Derevianko A 2006 Phys. Rev. A 74 020502
    [5] Ekstrom C R et al 1995 Phys. Rev. A 51 3883
    [6] Bonin K D and Kresin V V 1997 Electric-Dipole Polarizabilities of Atoms, Molecules and Clusters (Singapore: World Scientific)
    [7] Sahoo B K 2007 Chem. Phys. Lett. 448 144
    [8] Derevianko A et al 1999 Phys. Rev. Lett. 82 3589
    [9] Hamonou L and Hibbert A 2007 J. Phys. B: At. Mol. Phys. 40 3555
    [10] Qing B, Cheng C, Gao X, Zhang X L and Li J M 2010 Acta. Phys. Sin. 59 (7) (in press) (in Chinese)
    [11] Burke P G et al 1975 Adv. At. Mol. Phys. 11 143
        Berrington K A et al 1995 Comput. Phys. Commun. 92 290
        Han X Y and Li J M 2006 Phys. Rev. A 74 062711
    [12] Gao X et al 2010 Chin. Phys. Lett. (submitted)
    [13] Hotop H et al 1985 J. Phys. Chem. Ref. Data 14 731
    [14] Norcross D W 1974 Phys. Rev. Lett. 32 192
    [15] Weiss A 1968 Phys. Rev. 166 70
    [16] Schwarz W H E 1971 Chem. Phys. Lett. 10 478
    [17] Chung K T 1968 Phys. Rev. 166 1
        Lan Vo Ky et al 1976 J. Phys. B: At. Mol. Phys. 9 1065
        Hibbert A et al 1977 J. Phys. B: At. Mol. Phys. 10 1015
    [18] Hibbert A 1975 Comput. Phys. Commun . 9 141
    [19] Yan J, Qu Y Z et al 1998 Phys. Rev. A 57 997
    Peng Y L et al 2005 J. Phys. B: At. Mol. Phys. 38 3825
    [20] Clementi E et al 1974 At. Data Nucl. Data Tables 14 177
    [21] Ralchenko Y, Kramida A E, Reader J and NIST ASD Team 2008 NIST Atomic Spectra Database (version 3.1.5) http://physics.nist.gov/PhysRefData/ASD/levels_form.html [2010, January 7] (Gaithersburg: National Institute of Standards and Technology)
    [22] Gao X, Han X Y et al 2010 Phys. Rev. A 81 022703
    [23] Li J M et al 2010 Plasma. Sci. Technol. 12 (3) (in press)
  • Related Articles

    [1]Bang Liu, Li-Hua Zhang, Qi-Feng Wang, Yu Ma, Tian-Yu Han, Zong-Kai Liu, Zheng-Yuan Zhang, Shi-Yao Shao, Jun Zhang, Qing Li, Han-Chao Chen, Yu-Long Han, Dong-Sheng Ding, Bao-Sen Shi. Cavity-enhanced Rydberg atom microwave receiver [J]. Chin. Phys. Lett., 2025, 42(5). doi: 10.1088/0256-307X/42/5/053201
    [2]GAO Xiang, CHENG Cheng, LI Jia-Ming. Fine Structures of Atomic Excited States: Precision Atomic Spectroscopy and Electron-Ion Collision Process [J]. Chin. Phys. Lett., 2011, 28(3): 033101. doi: 10.1088/0256-307X/28/3/033101
    [3]ZHOU Xiao-Ji, CHEN Xu-Zong, CHEN Jing-Biao, WANG Yi-Qiu, LI Jia-Ming. Microwave Atomic Clock in the Optical Lattice with Specific Frequency [J]. Chin. Phys. Lett., 2009, 26(9): 090601. doi: 10.1088/0256-307X/26/9/090601
    [4]ZHAO Kun-Yu, ZENG Hua-Rong, SONG Hong-Zhang, HUI Sen-Xing, LI Guo-Rongv, YIN Qing-Rui, Kiyoshi Shimamura, Chinna Venkadasamy Kannan, Encarnacion Antonia Garcia Villora, Shunji Takekawa, Kenji Kitamura. Acoustic Imaging Frequency Dynamics of Ferroelectric Domains by Atomic Force Microscopy [J]. Chin. Phys. Lett., 2008, 25(9): 3429-3432.
    [5]LIU Lu, GUO Tao, DENG Ke, LIU Xin-Yuan, CHEN Xu-Zong, WANG Zhong. Frequency Stability of Atomic Clocks Based on Coherent Population Trapping Resonance in 85Rb [J]. Chin. Phys. Lett., 2007, 24(7): 1883-1885.
    [6]ZHANG Wen-Tao, LI Tong-Bao. Atom Lithography with a Chromium Atomic Beam [J]. Chin. Phys. Lett., 2006, 23(11): 2952-2955.
    [7]BAI Yu-Lin, CHEN Xiang-Rong, CHENG Xiao-Hong, YANG Xiang-Dong. Ab Initio Calculations for the Polarizabilities of Small Sulfur Clusters [J]. Chin. Phys. Lett., 2005, 22(11): 2795-2797.
    [8]ZHANG Jun-Hai, WANG Feng-Zhi, WANG Yi-Qiu, YANG Dong-Hai. Evaluation of Light Frequency Shift in a Caesium Beam Frequency Standard with Sharp Angle Incident Detecting Laser [J]. Chin. Phys. Lett., 2004, 21(5): 840-842.
    [9]CHEN Jing-Biao, ZHU Cheng-Jin, WANGFeng-Zhi, YANG Dong-Hai, WANG Yi-Qiu. A New Pumping--Probing Scheme for the Optically PumpedCesium Beam Frequency Standard [J]. Chin. Phys. Lett., 2001, 18(1): 16-17.
    [10]WANG Xin-qi, WANG Yu-zhu. Proposal of A New Space Atomic Frequency Standard [J]. Chin. Phys. Lett., 1999, 16(7): 478-480.

Catalog

    Article views (1) PDF downloads (494) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return