Kondo and Coulomb Interaction Effects in Spin-Polarized Transport through Double Quantum Dots
-
Abstract
By means of the slave-boson mean-field approximation, we theoretically investigate the Kondo and Coulomb interaction effects in spin-polarized transport through two coupled quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. The density of states is calculated in the Kondo regime for the effect of the interdot Coulomb repulsion with both parallel and antiparallel lead-polarization alignments. Our results reveal that the interdot Coulomb interaction between quantum dots greatly influence the density of states of the dots. We then clarify relevant underlying physics of this problem.
Article Text
-
-
-
About This Article
Cite this article:
CHEN Jia-Feng, WU Shao-Quan, HOU Tao, ZHAO Guo-Ping. Kondo and Coulomb Interaction Effects in Spin-Polarized Transport through Double Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(4): 047201. DOI: 10.1088/0256-307X/27/4/047201
CHEN Jia-Feng, WU Shao-Quan, HOU Tao, ZHAO Guo-Ping. Kondo and Coulomb Interaction Effects in Spin-Polarized Transport through Double Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(4): 047201. DOI: 10.1088/0256-307X/27/4/047201
|
CHEN Jia-Feng, WU Shao-Quan, HOU Tao, ZHAO Guo-Ping. Kondo and Coulomb Interaction Effects in Spin-Polarized Transport through Double Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(4): 047201. DOI: 10.1088/0256-307X/27/4/047201
CHEN Jia-Feng, WU Shao-Quan, HOU Tao, ZHAO Guo-Ping. Kondo and Coulomb Interaction Effects in Spin-Polarized Transport through Double Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(4): 047201. DOI: 10.1088/0256-307X/27/4/047201
|