Theoretical Studies of Optical Properties of Silver Nanoparticles
-
Abstract
Optical properties of silver nanoparticles such as extinction, absorption and scattering efficiencies are studied based on Green's function theory. The numerical simulation results show that optical properties of silver nanoparticles are mainly dependent on their sizes and geometries; the localized plasmon resonance peak is red shifted when the dielectric constant of the particle's surrounding medium increases or when a substrate is presented. The influences of wave polarizations, the incident angles of light, the composite silver and multiply-layers on the plasmon resonance are also reported. The numerical simulation of optical spectra is a very useful tool for nanoparticle growth and characterization.
Article Text
-
-
-
About This Article
Cite this article:
MA Ye-Wan, WU Zhao-Wang, ZHANG Li-Hua, ZHANG Jie. Theoretical Studies of Optical Properties of Silver Nanoparticles[J]. Chin. Phys. Lett., 2010, 27(2): 024207. DOI: 10.1088/0256-307X/27/2/024207
MA Ye-Wan, WU Zhao-Wang, ZHANG Li-Hua, ZHANG Jie. Theoretical Studies of Optical Properties of Silver Nanoparticles[J]. Chin. Phys. Lett., 2010, 27(2): 024207. DOI: 10.1088/0256-307X/27/2/024207
|
MA Ye-Wan, WU Zhao-Wang, ZHANG Li-Hua, ZHANG Jie. Theoretical Studies of Optical Properties of Silver Nanoparticles[J]. Chin. Phys. Lett., 2010, 27(2): 024207. DOI: 10.1088/0256-307X/27/2/024207
MA Ye-Wan, WU Zhao-Wang, ZHANG Li-Hua, ZHANG Jie. Theoretical Studies of Optical Properties of Silver Nanoparticles[J]. Chin. Phys. Lett., 2010, 27(2): 024207. DOI: 10.1088/0256-307X/27/2/024207
|