Periodic, Quasiperiodic and Chaotic q-Breathers in a Fermi-Pasta-Ulam Lattice
1 Department of Physics, Daqing Normal University, Daqing 163712 2 Department of Physics, Beijing Normal University, Beijing 100875
Received Date:
October 20, 2009
Published Date:
January 31, 2010
Abstract
We study the features of a single q-breather (SQB) in a Fermi-Pasta-Ulam lattice by the numerical method, and obtain that the stability of SQB correlates to coupling constant K and nonlinear parameter β. No matter whether K or β increases, the periodic SQB can be transformed into a quasiperiodic SQB or a chaotic SQB. We also obtain the conditions of excitation of periodic, quasiperiodic and chaotic SQBs.
Article Text
References
[1]
Fermi E, Pasta J and Ulam S 1955 Los Alamos Report La-1940
[2]
Mackay R S and Aubry S 1994 Nonlinearity 7 1623
[3]
Takeno S, Kisoda K and Sievers A J 1988 Prog. Theor. Phys. Suppl. 94 242
[4]
Bickham S R, Kiselev S A and Sievers A J 1993 Phys. Rev. B 47 14206
[5]
Cretegry T, Livi R and Spicci M 1998 Physica D 119 88
[6]
James G and Noble P 2004 Physica D 196 124
[7]
Hornguist M, Lennholm E and Basu C 2000 Physica D 136 88
[8]
Maniadis P, Zolotaryuk A V and Tsironis G P 2003 Phys. Rev. E. 67 046612
[9]
James G and Kastner M 2007 Nonlinearity 20 631
[10]
Ullmann K, Lichtenberg A J and Corso G 2000 Phys. Rev. E. 61 2471
[11]
Gershgorin B, Lvov Y V and Cai D 2005 Phys. Rev. Lett. 95 264302
Related Articles
[1] DAI Zheng-De, WU Feng-Xia, LIU Jun, MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation [J]. Chin. Phys. Lett., 2012, 29(4): 040201. doi: 10.1088/0256-307X/29/4/040201
[2] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 2012, 29(3): 030201. doi: 10.1088/0256-307X/29/3/030201
[3] LV Zhong-Quan, XUE Mei, WANG Yu-Shun. A New Multi-Symplectic Scheme for the KdV Equation [J]. Chin. Phys. Lett., 2011, 28(6): 060205. doi: 10.1088/0256-307X/28/6/060205
[4] WANG Yu-Shun, WANG Bin, CHEN Xin. Multisymplectic Euler Box Scheme for the KdV Equation [J]. Chin. Phys. Lett., 2007, 24(2): 312-314.
[5] LI Wen-Min, GENG Xian-Guo. Darboux Transformation of a Differential--Difference Equation and Its Explicit Solutions [J]. Chin. Phys. Lett., 2006, 23(6): 1361-1364.
[6] MA Chang-Feng. A New Lattice Boltzmann Model for KdV-Burgers Equation [J]. Chin. Phys. Lett., 2005, 22(9): 2313-2315.
[7] YAN Jia-Ren, PAN Liu-Xian, ZHOU Guang-Hui. Soliton Perturbations for a Combined KdV-MKdV Equation [J]. Chin. Phys. Lett., 2000, 17(9): 625-627.
[8] YANG Kongqing. A Periodic Solution of Kdv Equation in Virasoro Algebra [J]. Chin. Phys. Lett., 1995, 12(2): 65-67.
[9] ZHANG Jiefang, HAN Ping. Symmetries of the Variable Coefficient KdV Equation and ThreeHierarchies of the Integrodifferential Variable Coefficient KdV Equation [J]. Chin. Phys. Lett., 1994, 11(12): 721-723.
[10] TANG Shimin. Various Progressive Waves as solutions to the Modified KdV Equation [J]. Chin. Phys. Lett., 1991, 8(6): 292-295.
About This Article
Cite this article:
XU Quan, TIAN Qiang. Periodic, Quasiperiodic and Chaotic q-Breathers in a Fermi-Pasta-Ulam Lattice[J].
Chin. Phys. Lett. , 2010, 27(2): 020505.
DOI: 10.1088/0256-307X/27/2/020505
XU Quan, TIAN Qiang. Periodic, Quasiperiodic and Chaotic q-Breathers in a Fermi-Pasta-Ulam Lattice[J]. Chin. Phys. Lett. , 2010, 27(2): 020505. DOI: 10.1088/0256-307X/27/2/020505