Periodic, Quasiperiodic and Chaotic q-Breathers in a Fermi-Pasta-Ulam Lattice

  • Received Date: October 20, 2009
  • Published Date: January 31, 2010
  • We study the features of a single q-breather (SQB) in a Fermi-Pasta-Ulam lattice by the numerical method, and obtain that the stability of SQB correlates to coupling constant K and nonlinear parameter β. No matter whether K or β increases, the periodic SQB can be transformed into a quasiperiodic SQB or a chaotic SQB. We also obtain the conditions of excitation of periodic, quasiperiodic and chaotic SQBs.
  • Article Text

  • [1] Fermi E, Pasta J and Ulam S 1955 Los Alamos Report La-1940
    [2] Mackay R S and Aubry S 1994 Nonlinearity 7 1623
    [3] Takeno S, Kisoda K and Sievers A J 1988 Prog. Theor. Phys. Suppl. 94 242
    [4] Bickham S R, Kiselev S A and Sievers A J 1993 Phys. Rev. B 47 14206
    [5] Cretegry T, Livi R and Spicci M 1998 Physica D 119 88
    [6] James G and Noble P 2004 Physica D 196 124
    [7] Hornguist M, Lennholm E and Basu C 2000 Physica D 136 88
    [8] Maniadis P, Zolotaryuk A V and Tsironis G P 2003 Phys. Rev. E. 67 046612
    [9] James G and Kastner M 2007 Nonlinearity 20 631
    [10] Ullmann K, Lichtenberg A J and Corso G 2000 Phys. Rev. E. 61 2471
    [11] Gershgorin B, Lvov Y V and Cai D 2005 Phys. Rev. Lett. 95 264302
  • Related Articles

    [1]DAI Zheng-De, WU Feng-Xia, LIU Jun, MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation [J]. Chin. Phys. Lett., 2012, 29(4): 040201. doi: 10.1088/0256-307X/29/4/040201
    [2]CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 2012, 29(3): 030201. doi: 10.1088/0256-307X/29/3/030201
    [3]LV Zhong-Quan, XUE Mei, WANG Yu-Shun. A New Multi-Symplectic Scheme for the KdV Equation [J]. Chin. Phys. Lett., 2011, 28(6): 060205. doi: 10.1088/0256-307X/28/6/060205
    [4]WANG Yu-Shun, WANG Bin, CHEN Xin. Multisymplectic Euler Box Scheme for the KdV Equation [J]. Chin. Phys. Lett., 2007, 24(2): 312-314.
    [5]LI Wen-Min, GENG Xian-Guo. Darboux Transformation of a Differential--Difference Equation and Its Explicit Solutions [J]. Chin. Phys. Lett., 2006, 23(6): 1361-1364.
    [6]MA Chang-Feng. A New Lattice Boltzmann Model for KdV-Burgers Equation [J]. Chin. Phys. Lett., 2005, 22(9): 2313-2315.
    [7]YAN Jia-Ren, PAN Liu-Xian, ZHOU Guang-Hui. Soliton Perturbations for a Combined KdV-MKdV Equation [J]. Chin. Phys. Lett., 2000, 17(9): 625-627.
    [8]YANG Kongqing. A Periodic Solution of Kdv Equation in Virasoro Algebra [J]. Chin. Phys. Lett., 1995, 12(2): 65-67.
    [9]ZHANG Jiefang, HAN Ping. Symmetries of the Variable Coefficient KdV Equation and ThreeHierarchies of the Integrodifferential Variable Coefficient KdV Equation [J]. Chin. Phys. Lett., 1994, 11(12): 721-723.
    [10]TANG Shimin. Various Progressive Waves as solutions to the Modified KdV Equation [J]. Chin. Phys. Lett., 1991, 8(6): 292-295.

Catalog

    Article views (0) PDF downloads (522) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return