Analysis of Chaotic Dynamics in a Two-Dimensional Sine Square Map
-
Abstract
We study an N-dimensional system based upon a sine map, which is related to the simplified model of an opto-electronic system. The system behavior is analyzed with the tools of nonlinear dynamics (bifurcations in the parameter plane, critical manifolds, basins of attraction, chaotic attractors). Our study relies on a two-dimensional system (N=2). It is interesting that this system shows the existence of bounded chaotic orbits, which can be considered for secure transmissions.
Article Text
-
-
-
About This Article
Cite this article:
XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Dani`ele, TAHA Abdel-Kaddous, CHARGE Pascal. Analysis of Chaotic Dynamics in a Two-Dimensional Sine Square Map[J]. Chin. Phys. Lett., 2010, 27(2): 020504. DOI: 10.1088/0256-307X/27/2/020504
XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Dani`ele, TAHA Abdel-Kaddous, CHARGE Pascal. Analysis of Chaotic Dynamics in a Two-Dimensional Sine Square Map[J]. Chin. Phys. Lett., 2010, 27(2): 020504. DOI: 10.1088/0256-307X/27/2/020504
|
XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Dani`ele, TAHA Abdel-Kaddous, CHARGE Pascal. Analysis of Chaotic Dynamics in a Two-Dimensional Sine Square Map[J]. Chin. Phys. Lett., 2010, 27(2): 020504. DOI: 10.1088/0256-307X/27/2/020504
XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Dani`ele, TAHA Abdel-Kaddous, CHARGE Pascal. Analysis of Chaotic Dynamics in a Two-Dimensional Sine Square Map[J]. Chin. Phys. Lett., 2010, 27(2): 020504. DOI: 10.1088/0256-307X/27/2/020504
|