Noise Effects on Temperature Encoding of Neuronal Spike Trains in a Cold Receptor
-
Abstract
We examine how noise interacts with encoding mechanisms of neuronal stimulus in a cold receptor. From ISI series and bifurcation diagrams it is shown that there are considerable differences in interval distributions and impulse patterns caused by purely deterministic simulations and noisy simulations. The ISI-distance can be used as an effective and powerful way to measure the noise effects on spike trains of the cold receptor quantitatively. It is also found that spike trains observed in cold receptors can be more strongly affected by noise for low temperatures than for high temperatures in some aspects; meanwhile, the spike train has greater variability with increasing noise intensity.
Article Text
-
-
-
About This Article
Cite this article:
DU Ying, LU Qi-Shao. Noise Effects on Temperature Encoding of Neuronal Spike Trains in a Cold Receptor[J]. Chin. Phys. Lett., 2010, 27(2): 020503. DOI: 10.1088/0256-307X/27/2/020503
DU Ying, LU Qi-Shao. Noise Effects on Temperature Encoding of Neuronal Spike Trains in a Cold Receptor[J]. Chin. Phys. Lett., 2010, 27(2): 020503. DOI: 10.1088/0256-307X/27/2/020503
|
DU Ying, LU Qi-Shao. Noise Effects on Temperature Encoding of Neuronal Spike Trains in a Cold Receptor[J]. Chin. Phys. Lett., 2010, 27(2): 020503. DOI: 10.1088/0256-307X/27/2/020503
DU Ying, LU Qi-Shao. Noise Effects on Temperature Encoding of Neuronal Spike Trains in a Cold Receptor[J]. Chin. Phys. Lett., 2010, 27(2): 020503. DOI: 10.1088/0256-307X/27/2/020503
|