Phase-Dependent Effects in Stern-Gerlach Experiments
-
Abstract
In the frame of quantum mechanics, we consider an ensemble of spin-1/2 neutral particles passing through a Stern-Gerlach apparatus and explore how their motions depend on the initial phase difference between two internal spin states. Assuming the particles moving along y-axis, due to the initial phase difference between spin states, they not only split along the longitudinal direction (z-axis) but also separate along the lateral direction (x-axis). The dependence of the lateral displacement on the initial phase difference reminds one of the picture of a quantum interference. This generalized interference provides an alternative approach to measuring the initial phase difference. The experimental realization with ultracold atoms or Bose-Einstein condensates is also discussed.
Article Text
-
-
-
About This Article
Cite this article:
XU Xu, ZHOU Xiao-Ji. Phase-Dependent Effects in Stern-Gerlach Experiments[J]. Chin. Phys. Lett., 2010, 27(1): 010309. DOI: 10.1088/0256-307X/27/1/010309
XU Xu, ZHOU Xiao-Ji. Phase-Dependent Effects in Stern-Gerlach Experiments[J]. Chin. Phys. Lett., 2010, 27(1): 010309. DOI: 10.1088/0256-307X/27/1/010309
|
XU Xu, ZHOU Xiao-Ji. Phase-Dependent Effects in Stern-Gerlach Experiments[J]. Chin. Phys. Lett., 2010, 27(1): 010309. DOI: 10.1088/0256-307X/27/1/010309
XU Xu, ZHOU Xiao-Ji. Phase-Dependent Effects in Stern-Gerlach Experiments[J]. Chin. Phys. Lett., 2010, 27(1): 010309. DOI: 10.1088/0256-307X/27/1/010309
|