Effect of the Pulse Duty Cycle on Characteristics of Plasma Electrolytic Oxidation Coatings Formed on AZ31 Magnesium Alloy

  • Ceramic coatings are synthesized on AZ31 magnesium alloy in alkaline silicate solution by the method of plasma electrolytic oxidation. The effect of two different duty cycles (10% and 50%) on the structure and corrosive properties of the coatings is investigated. It is found that the coatings are mainly composed of MgO, Mg2SiO4 and MgF2 through XRD analysis. SEM images indicate that coatings formed at 50% duty cycle have a relatively coarse surface with larger pore size and fewer pores, and have a slower growth rate than those formed at 10% duty cycle with the same treatment time. However, the results of potentiodynamic polarization tests demonstrate that coatings formed at 50% duty cycle exhibit better corrosion resistance as a result of more compact microstructure.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return