Functional Time Series Prediction Using Process Neural Network

  • Time series prediction methods based on conventional neural networks do not take into account the functional relations between the discrete observed values in the time series. This usually causes a low prediction accuracy. To solve this problem, a functional time series prediction model based on a process neural network is proposed in this paper. A Levenberg-Marquardt learning algorithm based on the expansion of the orthonormal basis functions is developed to train the proposed functional time series prediction model. The efficiency of the proposed functional time series prediction model and the corresponding learning algorithm is verified by the prediction of the monthly mean sunspot numbers. The comparative test results indicate that process neural network is a promising tool for functional time series prediction.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return