Robust Low Voltage Program-Erasable Cobalt-Nanocrystal Memory Capacitors with Multistacked Al2O3/HfO2/Al2O3 Tunnel Barrier

  • An atomic-layer-deposited Al2O3/HfO2/Al2O3 (A/H/A) tunnel barrier is investigated for Co nanocrystal memory capacitors. Compared to a single Al2O3 tunnel barrier, the A/H/A barrier can significantly increase the hysteresis window, i.e., an increase by 9V for ±12V sweep range. This is attributed to a marked decrease in the energy barriers of charge injections for the A/H/A tunnel barrier. Further, the Co-nanocrystal memory capacitor with the A/H/A tunnel barrier exhibits a memory window as large as 4.1V for 100μs program/erase at a low voltage of ±7V, which is due to fast charge injection rates, i.e., about 2.4×1016cm-2s-1 for electrons and 1.9×1016cm-2s-1 for holes.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return