Adsorption Mechanism of Hydrogen on Boron-Doped Fullerenes

  • The C35BH-H2 complex and two other possible isomers, C34BCaH-H2 and C34BCbH-H2, are investigated using the local-spin-density approximation (LSDA) method. The results indicate that a single hydrogen molecule could be strongly adsorbed on two isomers, C34BCaH and C34BCbH, with binding
    energies of 0.42 and 0.47eV, respectively, and that these calculated binding energies are suitable for reversible hydrogen adsorption/desorption near room temperature. However, it is difficult for the H2 molecule to be firmly adsorbed on C35BH. We analyze the interaction between C34BCxH (x=a, b) and the H2 molecule using dipole moments and molecular orbitals. The charge analysis showed there was a partial charge (about 0.32e) transfer from H2 to the doped fullerenes. These calculation results should broaden our understanding of the mechanisms of hydrogen storage using boron-doped fullerenes.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return