Darboux Transformation and Exact Solutions of the Myrzakulov-I Equation
-
Abstract
The Myrzakulov-I equation is a 2+1-dimensional generalization of the Heisenberg ferromagnetic equation and has a non-isospectral Lax pair. The Darboux transformation with non-constant spectral parameter is constructed and an extra constraint on the spectral parameter for the existence of the Darboux transformation is derived. Explicit expressions of the solutions of the Myrzakulov-I equation are presented.
Article Text
-
-
-
About This Article
Cite this article:
CHEN Chi, ZHOU Zi-Xiang. Darboux Transformation and Exact Solutions of the Myrzakulov-I Equation[J]. Chin. Phys. Lett., 2009, 26(8): 080504. DOI: 10.1088/0256-307X/26/8/080504
CHEN Chi, ZHOU Zi-Xiang. Darboux Transformation and Exact Solutions of the Myrzakulov-I Equation[J]. Chin. Phys. Lett., 2009, 26(8): 080504. DOI: 10.1088/0256-307X/26/8/080504
|
CHEN Chi, ZHOU Zi-Xiang. Darboux Transformation and Exact Solutions of the Myrzakulov-I Equation[J]. Chin. Phys. Lett., 2009, 26(8): 080504. DOI: 10.1088/0256-307X/26/8/080504
CHEN Chi, ZHOU Zi-Xiang. Darboux Transformation and Exact Solutions of the Myrzakulov-I Equation[J]. Chin. Phys. Lett., 2009, 26(8): 080504. DOI: 10.1088/0256-307X/26/8/080504
|