Orientation and Rate Dependence of Wave Propagation in Shocked Beta-SiC from Atomistic Simulations
-
Abstract
The orientation dependence of planar wave propagation in beta-SiC is studied via the molecular dynamics (MD) method. Simulations are implemented under impact loadings in four main crystal directions, i.e., <100>, <110>, <111>, and <112>. The dispersion of stress states in different directions increases with rising impact velocity, which implies the anisotropic characteristic of shock wave propagation for beta-SiC materials. We also obtain the Hugoniot relations between the shock wave velocity and the impact velocity, and find that the shock velocity falls into a plateau above a threshold of impact velocity. The shock velocity of the plateaux is dependent on the shock directions, while <111> and <112> can be regarded as equivalent directions as they almost reach the same plateau. A comparison between the atomic stress from MD and the stress from Rankine-Hugoniot jump conditions is also made, and it is found that they agree with each other very well.
Article Text
-
-
-
About This Article
Cite this article:
CHENG Qin, WU Heng-An, WANG Yu, WANG Xiu-Xi. Orientation and Rate Dependence of Wave Propagation in Shocked Beta-SiC from Atomistic Simulations[J]. Chin. Phys. Lett., 2009, 26(7): 076202. DOI: 10.1088/0256-307X/26/7/076202
CHENG Qin, WU Heng-An, WANG Yu, WANG Xiu-Xi. Orientation and Rate Dependence of Wave Propagation in Shocked Beta-SiC from Atomistic Simulations[J]. Chin. Phys. Lett., 2009, 26(7): 076202. DOI: 10.1088/0256-307X/26/7/076202
|
CHENG Qin, WU Heng-An, WANG Yu, WANG Xiu-Xi. Orientation and Rate Dependence of Wave Propagation in Shocked Beta-SiC from Atomistic Simulations[J]. Chin. Phys. Lett., 2009, 26(7): 076202. DOI: 10.1088/0256-307X/26/7/076202
CHENG Qin, WU Heng-An, WANG Yu, WANG Xiu-Xi. Orientation and Rate Dependence of Wave Propagation in Shocked Beta-SiC from Atomistic Simulations[J]. Chin. Phys. Lett., 2009, 26(7): 076202. DOI: 10.1088/0256-307X/26/7/076202
|