New Canards Bursting and Canards Periodic-Chaotic Sequence
-
Abstract
A trajectory following the repelling branch of an equilibrium or a periodic orbit is called a canards solution. Using a continuation method, we find a new type of canards bursting which manifests itself in an alternation between the oscillation phase following attracting the limit cycle branch and resting phase following a repelling fixed point branch in a reduced leech neuron model. Via periodic-chaotic alternating of infinite times, the number of windings within a canards bursting can approach infinity at a Gavrilov-Shilnikov homoclinic tangency bifurcation of a simple saddle limit cycle
Article Text
-
-
-
About This Article
Cite this article:
YOOER Chi-Feng, XU Jian-Xue, ZHANG Xin-Hua. New Canards Bursting and Canards Periodic-Chaotic Sequence[J]. Chin. Phys. Lett., 2009, 26(7): 070504. DOI: 10.1088/0256-307X/26/7/070504
YOOER Chi-Feng, XU Jian-Xue, ZHANG Xin-Hua. New Canards Bursting and Canards Periodic-Chaotic Sequence[J]. Chin. Phys. Lett., 2009, 26(7): 070504. DOI: 10.1088/0256-307X/26/7/070504
|
YOOER Chi-Feng, XU Jian-Xue, ZHANG Xin-Hua. New Canards Bursting and Canards Periodic-Chaotic Sequence[J]. Chin. Phys. Lett., 2009, 26(7): 070504. DOI: 10.1088/0256-307X/26/7/070504
YOOER Chi-Feng, XU Jian-Xue, ZHANG Xin-Hua. New Canards Bursting and Canards Periodic-Chaotic Sequence[J]. Chin. Phys. Lett., 2009, 26(7): 070504. DOI: 10.1088/0256-307X/26/7/070504
|