Generalized Coherent States of a Particle in a Time-Dependent Linear Potential
-
Abstract
We derive, with an invariant operator method and unitary transformation approach, that the Schrödinger equation with a time-dependent linear potential possesses an infinite string of shape-preseving wave-packet states |φα,λ>(t)> having classical motion. The qualitative properties of the invariant eigenvalue spectrum (discrete or continuous) are described separately for the different values of the frequency ω of a harmonic oscillator. It is also shown that, for a discrete eigenvalue spectrum, the states |φα,n>(t)> could be obtained from the coherent state |φα,0>(t).
Article Text
-
-
-
About This Article
Cite this article:
L. Krache, M. Maamache, Y. Saadi, A. Beniaiche. Generalized Coherent States of a Particle in a Time-Dependent Linear Potential[J]. Chin. Phys. Lett., 2009, 26(7): 070307. DOI: 10.1088/0256-307X/26/7/070307
L. Krache, M. Maamache, Y. Saadi, A. Beniaiche. Generalized Coherent States of a Particle in a Time-Dependent Linear Potential[J]. Chin. Phys. Lett., 2009, 26(7): 070307. DOI: 10.1088/0256-307X/26/7/070307
|
L. Krache, M. Maamache, Y. Saadi, A. Beniaiche. Generalized Coherent States of a Particle in a Time-Dependent Linear Potential[J]. Chin. Phys. Lett., 2009, 26(7): 070307. DOI: 10.1088/0256-307X/26/7/070307
L. Krache, M. Maamache, Y. Saadi, A. Beniaiche. Generalized Coherent States of a Particle in a Time-Dependent Linear Potential[J]. Chin. Phys. Lett., 2009, 26(7): 070307. DOI: 10.1088/0256-307X/26/7/070307
|