State-to-State Transitions in a Hindmarsh-Rose Neuron System
-
Abstract
We investigate the dynamical response of the neuron system to a feeble external signal by using the Hindmarsh-Rose model, when the system is tuned below the first bifurcation point, which corresponds to the period-1 bursting state, and an external signal with a fixed period of about 170s is introduced to the system. It is found that to respond to the outside signal, the system changes from the period-1 state to a period-2 one with variation of the signal amplitude, indicating the occurrence of state-to-state transition (SST). Moreover, when a signal with different fixed periods is introduced, we can also find a similar transition between other states. Furthermore, the effect of the frequency of the signal on the transition is also discussed. These results may imply that SST plays a constructive role in information processing in neuron systems.
Article Text
-
-
-
About This Article
Cite this article:
HUANG Shou-Fang, ZHANG Ji-Qian, DING Shi-Jiang. State-to-State Transitions in a Hindmarsh-Rose Neuron System[J]. Chin. Phys. Lett., 2009, 26(5): 050502. DOI: 10.1088/0256-307X/26/5/050502
HUANG Shou-Fang, ZHANG Ji-Qian, DING Shi-Jiang. State-to-State Transitions in a Hindmarsh-Rose Neuron System[J]. Chin. Phys. Lett., 2009, 26(5): 050502. DOI: 10.1088/0256-307X/26/5/050502
|
HUANG Shou-Fang, ZHANG Ji-Qian, DING Shi-Jiang. State-to-State Transitions in a Hindmarsh-Rose Neuron System[J]. Chin. Phys. Lett., 2009, 26(5): 050502. DOI: 10.1088/0256-307X/26/5/050502
HUANG Shou-Fang, ZHANG Ji-Qian, DING Shi-Jiang. State-to-State Transitions in a Hindmarsh-Rose Neuron System[J]. Chin. Phys. Lett., 2009, 26(5): 050502. DOI: 10.1088/0256-307X/26/5/050502
|