Quasi-Hamiltonian Structure Associated with an Integrable Coupling System
-
Abstract
Starting from a spectral problem, a corresponding soliton hierarchy is proposed, and we construct an integrable coupling system with five dependent variables for the hierarchy by using a class of semi-direct sums of Lie algebras. Moreover, it is shown that the coupling system possesses quasi-Hamiltionian structures, and that infinitely many conserved quantities are obtained.
Article Text
-
-
-
About This Article
Cite this article:
LUO Lin, FAN En-Gui. Quasi-Hamiltonian Structure Associated with an Integrable Coupling System[J]. Chin. Phys. Lett., 2009, 26(5): 050203. DOI: 10.1088/0256-307X/26/5/050203
LUO Lin, FAN En-Gui. Quasi-Hamiltonian Structure Associated with an Integrable Coupling System[J]. Chin. Phys. Lett., 2009, 26(5): 050203. DOI: 10.1088/0256-307X/26/5/050203
|
LUO Lin, FAN En-Gui. Quasi-Hamiltonian Structure Associated with an Integrable Coupling System[J]. Chin. Phys. Lett., 2009, 26(5): 050203. DOI: 10.1088/0256-307X/26/5/050203
LUO Lin, FAN En-Gui. Quasi-Hamiltonian Structure Associated with an Integrable Coupling System[J]. Chin. Phys. Lett., 2009, 26(5): 050203. DOI: 10.1088/0256-307X/26/5/050203
|